Math, asked by aryan021212, 1 day ago

Solve the following inequality

 \frac{ |x - 1| }{x + 2}  < 1

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given inequality is

\rm \: \dfrac{ |x - 1| }{x + 2} < 1 \\

We know, By definition of Modulus function, we have

\begin{gathered}\begin{gathered}\bf\:  |x| =  \begin{cases} &\sf{ - x \:  \: if \: x \:  < 0} \\  \\ &\sf{ \:  \: x \:  \: if \: x \geqslant 0} \end{cases}\end{gathered}\end{gathered} \\

So, using this definition,

\begin{gathered}\begin{gathered}\bf\:  |x - 1| =  \begin{cases} &\sf{ - x + 1 \:  \: if \: x \:  < 1} \\  \\ &\sf{ \:  \: x - 1 \:  \: if \: x \geqslant 1} \end{cases}\end{gathered}\end{gathered} \\

Consider, Case - 1

\rm \: When \: x <  - 1

So, given inequality can be rewritten as

\rm \: \dfrac{  - x  + 1 }{x + 2} < 1 \\

\rm \: \dfrac{  - x  + 1 }{x + 2} - 1 < 0 \\

\rm \: \dfrac{  - x  + 1  - x - 2}{x + 2}  < 0 \\

\rm \: \dfrac{  - 2x  - 1}{x + 2}  < 0 \\

\rm \: \dfrac{  - (2x + 1)}{x + 2}  < 0 \\

\rm \: \dfrac{2x + 1}{x + 2} >  0 \\

\rm\implies \:x <  - 2 \:  \: or \:  \: x >  - \dfrac{1}{2}

\rm \: As \: x \:  <  \:  -  \: 0

\rm\implies \: \: x \:  \in \: ( -  \infty , - 2) \:  \cup \: \bigg( - \dfrac{1}{2},1 \bigg)  -  -  - (1) \\

Now, Consider Case - 2

\rm \: When \: x \:  \geqslant  \: 1

So, given inequality can be rewritten as

\rm \: \dfrac{x - 1}{x + 2} < 1

\rm \: \dfrac{x - 1}{x + 2} - 1 < 0

\rm \: \dfrac{x - 1 - x - 2}{x + 2} < 0

\rm \: \dfrac{ - 3}{x + 2} < 0

\rm \: \dfrac{ 3}{x + 2}  >  0

\rm\implies \:x >  - 2

\rm \: As \: x \:  \geqslant  \: 1

\rm\implies \:x \:  \in \: [1, \:  \infty ) -  -  - (2) \\

So, from equation (1) and (2), we concluded that

\rm\implies \:x \:  \in \: ( -  \infty , - 2) \:  \cup \: \bigg( - \dfrac{1}{2},1 \bigg) \cup \: [1, \infty )

Or

\rm\implies \:x \:  \in \: ( -  \infty , - 2) \:  \cup \: \bigg( - \dfrac{1}{2}, \infty  \bigg) \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

BASIC CONCEPT USED

If a and b are two positive real numbers, such that a < b, then

\rm \: (x - a)(x - b) &lt; 0 \:  \: \rm\implies \:a  &lt; x &lt; b \:   \\

\rm \: (x - a)(x - b)  \leqslant  0 \:  \: \rm\implies \:a   \leqslant  x  \leqslant  b \:   \\

\rm \: (x - a)(x - b)   \geqslant   0 \:  \: \rm\implies \:x\leqslant  b \: or \: x  \geqslant  a \:   \\

\rm \: (x - a)(x - b) &gt; 0 \:  \: \rm\implies \:x &lt;   b \: or \: x &gt; a \:   \\

Answered by XxitzZBrainlyStarxX
7

Question:-

Solve the following inequality

\sf \large \frac{ |x - 1| }{x + 2} &lt; 1.

Given:-

\sf \large Inequality \:  \frac{ |x - 1| }{x + 2} &lt; 1.

Solution:-

\sf \large \frac{ |x - 1| }{x + 2}   &lt; 1

\sf \large \frac{ |x - 1| }{x + 2}  - 1 &lt; 0

\sf \large \frac{ |x - 1 |  - x - 2}{x + 2} &lt; 0

\sf \large Let,f(x) =  \frac{ |x - 1|  - x - 2}{x + 2}

So, We have:

\sf \large\begin{gathered}\begin{gathered}\begin{gathered}\:  \sf \large f(x)= \begin{cases} &amp;\sf \frac{ - 3}{x + 2}  \:  \:  \:  if \:  \: x \geqslant 1\\ \\ &amp;\sf  \frac{2x + 1}{x + 3}  \:  \:  \: if \:  \: x &lt; 1 \end{cases}\end{gathered}\end{gathered} \\ \end{gathered}

We want to know when f(x) < 0.

\sf \large Case - I (f(x)when \:  \: x   \geqslant 1)

\sf \large f(x) =  \frac{ - 3}{x + 2}  &lt; 0

\sf \large\Rightarrow x \in( -  2, \infty)  ∩(1, \infty)

 \sf \large \Rightarrow x \in(1, \infty)________________________________________

\sf \large Case-II(f(x)where \:  \: x &lt; 1)

\sf \large f(x) =  \frac{2x + 1}{x + 2}  &lt; 0

\sf \large \Rightarrow \: x \in \bigg[( -  \infty, - 2)∪( -  \frac{1}{2}, \infty) \bigg]∩( -  \infty,1)

 \sf \large \Rightarrow \in( -  \infty, - 2)∪( -  \frac{1}{2} ,1)

Taking union of both sets We get:-

 \sf \large \: x\in( -  \infty, - 2)∪( -  \frac{1}{2} , \infty)

Answer:-

{ \boxed{ \sf \large \red{ x \in( -  \infty, - 2)∪( -  \frac{1}{2},1).}}}

Hope you have satisfied.

Similar questions