Math, asked by Anonymous, 15 days ago

Solve the following inequality :

 \tt \dfrac{x(x + 6)(x + 2)^{2} (x - 3)}{(x - 4) ^{3}(x + 1) ^{4}    } > 0
Also show the answer on number line.

Class-11 inequality​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given inequality is

\rm :\longmapsto\:\tt \dfrac{x(x + 6)(x + 2)^{2} (x - 3)}{(x - 4) ^{3}(x + 1) ^{4} } > 0

Let first find the critical points.

So, critical points are x = 0, - 6, - 2, 3, 4 and - 1

Let rearranged according to number line - 6, - 2, - 1, 0, 3, 4

So, Let plot these points on number line and let check the interval and check the sign.

\begin{gathered}\boxed{\begin{array}{c|c} \bf Interval & \bf Sign \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf ( -  \infty, - 6)  & \sf  +  \\ \\ \sf ( - 6, - 2) & \sf  -  \\ \\ \sf ( - 2, - 1) & \sf  - \\ \\ \sf ( - 1,0) & \sf  - \\ \\ \sf (0,3) & \sf  +  \\ \\ \sf (3,4) & \sf  - \\ \\ \sf (4, \infty ) & \sf  + \end{array}} \\ \end{gathered}

Since, it is given that,

\rm :\longmapsto\:\tt \dfrac{x(x + 6)(x + 2)^{2} (x - 3)}{(x - 4) ^{3}(x + 1) ^{4} } > 0

So, required solution set is

\bf\implies \:x \:  \in \: ( -  \infty ,6) \:  \cup \:(0,3) \: \cup \:(4, \infty )

Additional Information :-

\boxed{ \rm{ x > y\rm  \: \implies\: - x <  - y}}

\boxed{ \rm{ x  <  y\rm  \: \implies\: - x  >   - y}}

\boxed{ \rm{ x   \geqslant   y\rm  \: \implies\: - x   \leqslant    - y}}

\boxed{ \rm{ x   \leqslant   y\rm  \: \implies\: - x   \geqslant    - y}}

\boxed{ \rm{ x >  - y \: \rm\implies \: - x < y}}

\boxed{ \rm{ x  <   - y \: \rm\implies \: - x  >  y}}

\boxed{ \rm{ x   \leqslant    - y \: \rm\implies \: - x   \geqslant   y}}

Attachments:
Similar questions