Math, asked by Anonymous, 2 months ago

Solve the following inequation and write the solution set :

11x - 4 < 15x + 4 < 13x + 14, x € W.

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

↝ Given that

\rm :\longmapsto\:11x - 4 &lt; 15x + 4 &lt; 13x + 14

where x belongs to W.

Consider,

\rm :\longmapsto\:11x - 4 &lt; 15x + 4

On Subtracting 15x from both sides, we get

\rm :\longmapsto\:11x - 4 - 15x &lt; 15x + 4 - 15x

\rm :\longmapsto\: - 4x - 4 &lt; 4

On adding 4 both sides, we get

\rm :\longmapsto\: - 4x - 4  + 4&lt; 4 + 4

\rm :\longmapsto\: - 4x &lt; 8

\bf\implies \:x  &gt;  - 2

As x belongs to whole numbers,

\bf\implies \:x \:   =  \:  \{0, \: 1, \: 2, \: 3, \:.  \:. \: . \: \} -  -  - (1)

Consider,

\rm :\longmapsto\:15x + 4 &lt; 13x + 14

On Subtracting 13x from both sides, we get

\rm :\longmapsto\:15x + 4 - 13x &lt; 13x + 14 - 13x

\rm :\longmapsto\:2x + 4  &lt; 14

On Subtracting 4 both sides, we get

\rm :\longmapsto\:2x + 4 - 4  &lt; 14  - 4

\rm :\longmapsto\:2x  &lt; 10

\bf\implies \:x &lt; 5

As x belongs to whole numbers,

\bf\implies \:x \:   =  \:  \{0, \: 1, \: 2, \: 3, \: 4 \} -  -  - (2)

So, from (1) and (2),

\bf\implies \:x \:   =  \:  \{0, \: 1, \: 2, \: 3, \: 4 \} \:  \cap \:  \{0, \: 1, \: 2, \: 3,...\}

\bf\implies \:x \:   =  \:  \{0, \: 1, \: 2, \: 3, \: 4 \}

Additional Information :-

\green{ \boxed{ \bf \: x &gt; y \:  \implies \:  - x &lt;  - y}}

\green{ \boxed{ \bf \: x  &lt;  y \:  \implies \:  - x  &gt;   - y}}

\green{ \boxed{ \bf \: x   \geqslant   y \:  \implies \:  - x   \leqslant    - y}}

\green{ \boxed{ \bf \: x   \leqslant   y \:  \implies \:  - x   \geqslant    - y}}

\green{ \boxed{ \bf \: x &gt; -  \:  y \:  \implies \:  - x &lt; y}}

Answered by Anonymous
5

Solution−

↝ Given that

:⟼11x−4<15x+4<13x+14

where x belongs to W.

Consider,

:⟼11x−4<15x+4

On Subtracting 15x from both sides, we get

:⟼11x−4−15x<15x+4−15x

:⟼−4x−4<4

On adding 4 both sides, we get

⟼−4x−4+4<4+4

⟼−4x<8

⟹x>−2

As x belongs to whole numbers,

⟹x={0,1,2,3,...}−−−(1)

Consider,

:⟼15x+4<13x+14

On Subtracting 13x from both sides, we get

:⟼15x+4−13x<13x+14−13x

:⟼2x+4<14

On Subtracting 4 both sides, we get

:⟼2x+4−4<14−4

⟼2x<10

⟹x<5

As x belongs to whole numbers,

⟹x={0,1,2,3,4}−−−(2)

So, from (1) and (2),

⟹x={0,1,2,3,4}∩{0,1,2,3,...}

⟹x={0,1,2,3,4}

Additional Information :-

\green{ \boxed{ \bf \: x &gt; y \: \implies \: - x &lt; - y}}

</p><p>\green{ \boxed{ \bf \: x &lt; y \: \implies \: - x &gt; - y}}

</p><p>\green{ \boxed{ \bf \: x \geqslant y \: \implies \: - x \leqslant - y}}

</p><p>\green{ \boxed{ \bf \: x \leqslant y \: \implies \: - x \geqslant - y}}

\green{ \boxed{ \bf \: x &gt; - \: y \: \implies \: - x &lt; y}} </p><p>

Similar questions