Math, asked by Anonymous, 1 month ago

Solve the following inequation , write the solution set and represent it on the number line :
-3(x - 7) ≥ 15 - 7x > x + 1/3 . x ∈ R.

Answers

Answered by CopyThat
52

Answer:

{x ∈ R : -1.5 ≤ x ≤ 2}

Step-by-step explanation:

Given :

=> -3(x - 7) ≥ 15 - 7x > x + 1/3 . x ∈ R.

To find :

Solution set and represent it on the number line.

Solution :

=> -3(x - 7) ≥ 15 - 7x > x + 1/3 . x ∈ R

>> -3(x - 7) ≥ 15 - 7x (1)

>> 15 - 7x > (x + 1)/3 (2)

=> -3x + 21 ≥ 15 - 7x

=> 4x ≥ -6

=> x ≥ -3/2

=> -3/2 ≤ x

=> 15 - 7x > (x + 1)/3

=> 45 - 21x > x + 1

=> 45 - 1 > x + 21x

=> 44 > 22x

=> 2 > x

=> x < 2

>> -3/2 ≤ x < 2, x ∈ R

>> -1/5 ≤ x 2, x ∈ R

∴ Solution set:

=> {x ∈ R : -1.5 ≤ x ≤ 2}

Attachments:
Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given linear inequality is

 \red{\rm :\longmapsto\: - 3(x - 7) \geqslant 15 - 7x &gt; x + \dfrac{1}{3} }

Consider,

 \red {\rm :\longmapsto\: - 3(x - 7) \geqslant 15 - 7x }

 {\rm :\longmapsto\: - 3x  + 21 \geqslant 15 - 7x }

 {\rm :\longmapsto\: - 3x + 7x \geqslant 15  - 21 }

\rm :\longmapsto\:4x \geqslant  - 6

\bf\implies \:x \geqslant  - \dfrac{3}{2}  -  -  - (1)

Now, Consider

 \red{\rm :\longmapsto\:  15 - 7x &gt; x + \dfrac{1}{3} }

 {\rm :\longmapsto\:   - 7x - x &gt;   \dfrac{1}{3}  - 15}

 {\rm :\longmapsto\:   - 8x &gt;   \dfrac{1 - 45}{3}}

 {\rm :\longmapsto\:   - 8x &gt;   -  \dfrac{44}{3}}

We know,

\boxed{ \bf{ \: x \geqslant y\bf\implies \: - x \leqslant  - y}}

\bf :\implies\:x  &lt;  \dfrac{11}{6}  -  -  - (2)

From equation (1) and (2), we concluded that

\bf\implies \: - \dfrac{3}{2} \leqslant x &lt; \dfrac{11}{6}

\bf\implies \:x \:  \in \: \bigg[ -  \: \dfrac{3}{2}, \: \dfrac{11}{6}\bigg)

Additional Information :-

\boxed{ \bf{ \: x &gt; y\bf\implies \: - x &lt;  - y}}

\boxed{ \bf{ \: x  &lt;  y\bf\implies \: - x  &gt;   - y}}

\boxed{ \bf{ \: x  &lt;  -  y\bf\implies \: - x  &gt;    y}}

\boxed{ \bf{ \: x   &gt;   -  y\bf\implies \: - x   &lt;    y}}

\boxed{ \bf{ \: x \geqslant y\bf\implies \: - x \leqslant  - y}}

\boxed{ \bf{ \: x \leqslant y\bf\implies \: - x \geqslant  - y}}

\boxed{ \bf{ \: -  x \leqslant y\bf\implies \: x \geqslant  - y}}

\boxed{ \bf{ \: -  x \geqslant y\bf\implies \: x \leqslant  - y}}

Attachments:
Similar questions