Math, asked by sukhpreetkaurgiana40, 1 month ago

solve the following inequations x+10>4x-5

question 11 class ka hi
question no 2nd hi
modern math hi​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given inequality is

\rm :\longmapsto\:x + 10 > 4x - 5

Subtracting 4x from both sides, we get

\rm :\longmapsto\:x + 10  - 4x> 4x - 5 - 4x

\rm :\longmapsto\:10  - 3x> - 5

On Subtracting 10 from both sides, we get

\rm :\longmapsto\:10  - 3x - 10> - 5 - 10

\rm :\longmapsto\:  - 3x > -15

\bf\implies \:x < 5

\bf\implies \:x \:  \in \: ( -  \infty , \: 5)

Additional Information :-

\red{ \boxed{ \sf{ \:x > y \:  \: \bf\implies  \: \: - \:  x \:  < \:   - \:  y}}}

\red{ \boxed{ \sf{ \:x  <  y \:  \: \bf\implies  \: \: - \:  x \:   >  \:   - \:  y}}}

\red{ \boxed{ \sf{ \:x  <   - y \:  \: \bf\implies  \: \: - \:  x \:   >  \:  y}}}

\red{ \boxed{ \sf{ \:x > -  y \:  \: \bf\implies  \: \: - \:  x \:  <  \:  y}}}

\red{ \boxed{ \sf{ \:x  \geqslant  -  y \:  \: \bf\implies  \: \: - \:  x \:   \leqslant   \:  y}}}

\red{ \boxed{ \sf{ \:x  \leqslant  -  y \:  \: \bf\implies  \: \: - \:  x \:   \geqslant   \:  y}}}

\red{ \boxed{ \sf{ \: -  \: x  \leqslant  -  y \:  \: \bf\implies  \: \:  x \:   \geqslant   \:  y}}}

Answered by robabsiddique56
6

Answer:

x + 10 > 4x - 5 \\  \\ 10 + 5 > 4x - x \\  \\ 15 > 3x \\  \\ 5 > x

Hope it will help you ✌️

Similar questions