Math, asked by Anonymous, 9 months ago

★ Solve the following integral !!

\large{\displaystyle{\sf \int \dfrac{x}{\sqrt[6]{x + 1}}dx}}

No spamming !! ​

Answers

Answered by Anonymous
49

SOLUTION

We have,

\large{\displaystyle{\sf l \:  = \int \dfrac{x}{\sqrt[6]{x + 1}}dx}}

The above integral can be solved by using u substitution

Now,

Assume,

 \sf \: \: u = x + 1

Taking derivative both sides,we get :

 \leadsto \:   \boxed{ \boxed{\sf \: du =   dx} }

The integral can be rewritten as :

\displaystyle{\sf l \:  = \int \dfrac{u - 1}{\sqrt[6]{u}} \: du}\\  \\ \longrightarrow \:  \displaystyle{ \sf \: l =  \int \: (u - 1) {u}^{ \frac{1}{6} }.du } \\  \\  \longrightarrow \:  \displaystyle{ \sf \: l =  \int \: (u {}^{ \frac{7}{6}  -  } u {}^{ \frac{1}{6} }).du }

Applying the formula of integration,

 \longrightarrow \:  \displaystyle{ \sf l = \:   \dfrac{u {}^{ \frac{7}{6} + 1 }}{ \frac{7}{6}  + 1}   -  \dfrac{ {u}^{ \frac{1}{6}  + 1} }{ \frac{1}{6} + 1 } + c }  \\  \\  \longrightarrow \:  \sf \: l =  \dfrac{6 {u}^{ \frac{13}{6} } }{13}  -  \dfrac{6 {u}^{ \frac{7}{6} } }{7}  + c \\  \\  \longrightarrow \:   \boxed{ \boxed{\sf \: l =  \frac{6( \sqrt[6]{x + 1} ) {}^{13} }{7}  -  \frac{6( \sqrt[6]{x + 1}) {}^{7}  }{7}  + c}}

NoTE

Integration :

  • \displaystyle{\sf I = \int \dfrac{x^{n+1}}{n + 1} }

  • C,known as Arbitrary Constant represents the family of integral solutions for a given integral

Integration can be solved by :

  • Substitution Method
  • Partial Fractions Method
  • Inspection Method
Answered by AdorableMe
46

INTEGRATING THE FOLLOWING EXPRESSION :-

\displaystyle{\sf{\int \frac{x}{\sqrt[6]{x+1} }  dx }}

Let (x + 1) = a, then da/dx = 1 ⇒ da = dx  (Derivative of x + 1 is 1)

\displaystyle{\sf{=\int \frac{a-1}{\sqrt[6]{a}  }  da}}

\displaystyle{\sf{=\int \bigg(a^\frac{5}{6}-\frac{1}{\sqrt[6]{a} }   \bigg)da  }}\\\\\displaystyle{\sf{=\int  a^\frac{5}{6}da-\int \frac{1}{\sqrt[6]{a} }da  }}

_______________

\displaystyle{\sf{solving\ \int a^\frac{6}{5} da\ :-  }}

By power rule,

\displaystyle{\sf{=\int \frac{a^{\frac{5}{6}+1}}{\frac{5}{6} +1}  }}\\\\\displaystyle{\sf{= \frac{6a^\frac{11}{6} }{11} }}

_______________

\displaystyle{\sf{Solving\ \int \frac{1}{\sqrt[6]{a} }da\ :-  }}

By power rule,

\displaystyle{\sf{=\frac{6a^\frac{6}{5} }{5}   }}

_______________

Now, putting the values :-

\displaystyle{\sf{=\int  a^\frac{5}{6}da-\int \frac{1}{\sqrt[6]{a} }da  }}\\\\\displaystyle{\sf{=  \frac{6a^\frac{11}{6} }{11}  -\frac{6a^\frac{5}{6} }{5} }}\\\\\displaystyle{\sf{=  \frac{6(x+1)^\frac{11}{6} }{11}  -\frac{6(x+1)^\frac{5}{6} }{5} }}

At last,

\displaystyle{\sf{=  \frac{6(x+1)^\frac{11}{6} }{11}  -\frac{6(x+1)^\frac{5}{6} }{5}+C }}

\boxed{\boxed{\sf{= \dfrac{\left(x+1\right)^\frac{5}{6}\left(30x-36\right)}{55}+C}}}

\rule{180}2

Thanks  :-)

Similar questions