Math, asked by 12ahujagitansh, 5 days ago

Solve the following integration

 \int \:  \frac{ {sin}^{2} x}{ {4cos}^{2} x +  {sin}^{2} x} dx

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

\rm \:  \displaystyle\int\rm  \frac{ {sin}^{2} x}{ {4cos}^{2} x +  {sin}^{2} x}  \: dx \\

can be further rewritten as

\rm \:  \displaystyle\int\rm  \frac{ {sin}^{2} x}{ {4(1 - sin}^{2} x) +  {sin}^{2} x}  \: dx \\

\rm \:  \displaystyle\int\rm  \frac{ {sin}^{2} x}{ {4 - 4sin}^{2} x +  {sin}^{2} x}  \: dx \\

\rm \:  \displaystyle\int\rm  \frac{ {sin}^{2} x}{ {4 - 3sin}^{2} x} \: dx \\

\rm \:  - \dfrac{1}{3}  \displaystyle\int\rm  \frac{  - 3{sin}^{2} x}{ {4 - 3sin}^{2} x} \: dx \\

\rm \:  - \dfrac{1}{3}  \displaystyle\int\rm  \frac{4  - 3{sin}^{2} x - 4}{ {4 - 3sin}^{2} x} \: dx \\

\rm \:  - \dfrac{1}{3}  \displaystyle\int\rm  \bigg(1 - \frac{4}{ {4 - 3sin}^{2} x}\bigg) \: dx \\

\rm \:  =  \:  - \dfrac{1}{3}  \displaystyle\int\rm 1 \: dx \:  +  \: \dfrac{4}{3}  \displaystyle\int\rm \frac{1}{ {4 - 3sin}^{2} x} \: dx \\

In second integral, divide numerator and denominator by cos^2x

\rm \:  =  \:  - \dfrac{1}{3}  x \:  +  \: \dfrac{4}{3}  \displaystyle\int\rm \frac{ {sec}^{2}x }{ {4 {sec}^{2}x - 3tan}^{2} x} \: dx \\

\rm \:  =  \:  - \dfrac{1}{3}  x \:  +  \: \dfrac{4}{3}  \displaystyle\int\rm \frac{ {sec}^{2}x }{ {4 {(1 + tan}^{2}x) - 3tan}^{2} x} \: dx \\

\rm \:  =  \:  - \dfrac{1}{3}  x \:  +  \: \dfrac{4}{3}  \displaystyle\int\rm \frac{ {sec}^{2}x }{ { {4 + 4tan}^{2}x - 3tan}^{2} x} \: dx \\

\rm \:  =  \:  - \dfrac{1}{3}  x \:  +  \: \dfrac{4}{3}  \displaystyle\int\rm \frac{ {sec}^{2}x }{4 +  {tan}^{2} x} \: dx \\

Now, to solve this integral, we use method of Substitution.

So, Substitute

\rm \: tanx = y \\

\rm \:  {sec}^{2} x \: dx  \: =  \: dy \\

So, on substituting the values, we get

\rm \:  =  \:  - \dfrac{1}{3}  x \:  +  \: \dfrac{4}{3}  \displaystyle\int\rm \frac{ dy }{4 +   {y}^{2} } \: \\

\rm \:  =  \:  - \dfrac{1}{3}  x \:  +  \: \dfrac{4}{3}  \displaystyle\int\rm \frac{ dy }{{y}^{2}  +  {2}^{2} } \: \\

\rm \:  =  \:  - \dfrac{1}{3}  x \:  +  \: \dfrac{4}{3} \times \dfrac{1}{2} {tan}^{ - 1} \dfrac{y}{2}  + c \: \\

\rm \:  =  \:  -  \: \dfrac{x}{3}\:  +  \: \dfrac{2}{3} {tan}^{ - 1} \bigg(\dfrac{tanx}{2}\bigg)  + c \: \\

Hence,

\rm \:   \displaystyle\int\rm  \frac{ {sin}^{2} x}{ {4cos}^{2}x +  {sin}^{2}x}dx =  \:  -  \: \dfrac{x}{3}\:  +  \: \dfrac{2}{3} {tan}^{ - 1} \bigg(\dfrac{tanx}{2}\bigg)  + c \: \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle\int\sf  \frac{dx}{ {x}^{2}  +  {a}^{2} }  =  \dfrac{1}{a} {tan}^{ - 1} \dfrac{x}{a} + c }\\ \\ \bigstar \: \bf{\displaystyle\int\sf  \frac{dx}{ \sqrt{ {x}^{2}  -  {a}^{2} } }  = log |x +  \sqrt{ {x}^{2}  -  {a}^{2} } | + c  }\\ \\ \bigstar \: \bf{\displaystyle\int\sf  \frac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } }  =  {sin}^{ - 1}  \frac{x}{a} + c }\\ \\ \bigstar \: \bf{\displaystyle\int\sf  \frac{dx}{ \sqrt{ {x}^{2}  +  {a}^{2} } } = log |x +  \sqrt{ {x}^{2} +  {a}^{2}} | + c}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions