Math, asked by whitepearl434, 3 months ago

solve the following limit..​

Attachments:

Answers

Answered by Anonymous
28

Explanation :

 \bigstar \:  \tt  lim_{x \to 0}  \bigg(  \cfrac{x}{ \sqrt{9 - x + x {}^{2} } - 3 } \bigg)   \\  \\  \\ \underline{ \tt Applying \:  L-hospital  \: rule,\: }\\  \\  \\  \longrightarrow \tt \: lim_{x \to 0}  \bigg( \cfrac{ \cfrac{d}{dx}(x) }{ \cfrac{d}{dx}( \sqrt{9 - x + x {}^{2} }   - 3)}    \bigg) \\  \\  \\ \longrightarrow \tt \: lim_{x \to 0}   \bigg( \cfrac{1}{ \cfrac{ - 1 + 2x}{2 \sqrt{ x{}^{2}  - x + 9} } }  \bigg) \\  \\  \\ \longrightarrow \tt \:  lim_{x \to 0}   \bigg( \cfrac{2 \sqrt{x {}^{2}   - x + 9}}{ - 1 + 2x}  \bigg)  \\  \\  \\  \longrightarrow \tt  \bigg(  \cfrac{2 \sqrt{0 {}^{2}  - 0 + 9} }{ - 1 + 2 \times 0} \bigg)  \\  \\  \\ \longrightarrow \tt  \bigg(  \cfrac{2 \sqrt{9} }{ - 1}  \bigg) \\  \\  \\ \longrightarrow \tt  \bigg(   \cfrac{2 \times 3}{ - 1}  \bigg) \\  \\  \\ \longrightarrow \tt  \bigg(  \cfrac{6}{ - 1}  \bigg) \\  \\  \\ \longrightarrow \:  \red{\boxed{ \underline{ \tt  - 6  }}} \: \bigstar

Hence :

\dag \boxed{\tt  lim_{x \to 0}  \bigg(  \cfrac{x}{ \sqrt{9 - x + x {}^{2} } - 3 } \bigg) =-6}


Anonymous: Superb ✌
Anonymous: Wrong Method using in chain rule
Anonymous: Please correct it before someone reported
Anonymous: yes bro
Anonymous: :)
Anonymous: ❤ by the way well done
Answered by Anonymous
5

Answer:

-6

Step-by-step explanation:

By substituting the limits directly, we get (0/0) which is an indeterminate quantity. Therefore we have to solve it using another method.

We will use method of rationalisation.

 \implies \lim \limits_{x \to 0} \dfrac{x}{ \sqrt{9 - x +  {x}^{2} } - 3 }

{ \implies \lim \limits_{x \to 0} \dfrac{x}{ \sqrt{9 - x +  {x}^{2} } - 3 }  \times  \dfrac{ \sqrt{9 - x +  {x}^{2} } + 3 }{\sqrt{9 - x +  {x}^{2} } + 3 } }

{ \implies \lim \limits_{x \to 0}\dfrac{ x(\sqrt{9 - x +  {x}^{2} } + 3) }{(\sqrt{9 - x +  {x}^{2} })^{2}   -  {(3)}^{2}  } }

{ \implies \lim \limits_{x \to 0}\dfrac{ x(\sqrt{9 - x +  {x}^{2} } + 3) }{9 - x +  {x}^{2}  - 9} }

{ \implies \lim \limits_{x \to 0}\dfrac{ x(\sqrt{9 - x +  {x}^{2} } + 3) }{ {x}^{2}  - x}}

{ \implies \lim \limits_{x \to 0}\dfrac{ x(\sqrt{9 - x +  {x}^{2} } + 3) }{x(x - 1)}}

{ \implies \lim \limits_{x \to 0}\dfrac{ \sqrt{9 - x +  {x}^{2} } + 3 }{x - 1}}

{ \implies \dfrac{ \sqrt{9 - 0+  {0}^{2} } + 3 }{0 - 1}}

{ \implies \dfrac{ \sqrt{9} + 3 }{- 1}}

{ \implies \dfrac{ 3 + 3 }{- 1}}

{ \implies  - 6}

Similar questions