Math, asked by whitepearl434, 5 months ago

solve the following limit.​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \lim_{x \rarr0} \frac{ \sqrt{ {x}^{2} + x + 4 }  - 2}{x}  \\

 = \lim_{x \rarr0} \frac{( \sqrt{ {x}^{2} + x + 4 } - 2)( \sqrt{ {x}^{2} + x + 4 }   + 2)}{x( \sqrt{ {x}^{2} + x + 4 }  + 2)}  \\

 = \lim_{x \rarr0} \frac{ {x}^{2} + x + 4 - 4 }{x( \sqrt{ {x}^{2} + x + 4 }  + 2)}  \\

 = \lim_{x \rarr0} \frac{x(x + 1)}{x( \sqrt{ {x}^{2} + x + 4 } + 2) } \\

 = \lim_{x \rarr0} \frac{(x + 1)}{( \sqrt{ {x}^{2} + x + 4 }  + 2)}  \\

 =  \frac{(0 + 1)}{( \sqrt{0 + 0 + 4}  + 2)}

 =  \frac{1}{4}  \\


whitepearl434: thank youuu sooooooo muchhhh
senboni123456: mention not
Similar questions