Math, asked by Anonymous, 1 day ago

Solve the following limit:

(tanx - sinx)/(8x³) where x tends to 0.​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{tanx - sinx}{ {8x}^{3} }  \\

If we substitute directly x = 0, we get

\rm \:=  \:   \frac{tan0 - sin0}{ 0 }  \\

\rm \:=  \:   \frac{0 - 0}{ 0 }  \\

\rm \:=  \:   \frac{0}{ 0 }  \\

which is indeterminant form.

So, Consider again

\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{tanx - sinx}{ {8x}^{3} }  \\

\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{ \dfrac{sinx}{cosx}  - sinx}{ {8x}^{3} }  \\

\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{ \dfrac{sinx - sinx \: cosx}{cosx}}{ {8x}^{3} }  \\

\rm \: =  \: \displaystyle\lim_{x \to 0}\rm \dfrac{sinx(1 - cosx)}{cosx \times  {8x}^{3} }

\rm \: =  \: \displaystyle\lim_{x \to 0}\rm \dfrac{tanx(1 - cosx)}{{8x}^{3} }  \\

\rm \: =  \: \dfrac{1}{8}  \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} \times \displaystyle\lim_{x \to 0}\rm  \frac{1 - cosx}{ {x}^{2} }  \\

We know,

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} \:  =  \: 1 \: }} \\

and

\boxed{\sf{  \: \: 1 - cos2x =  {2sin}^{2}x \: }} \\

So, using this result, we get

\rm \: =  \: \dfrac{1}{8} \times 1 \times \displaystyle\lim_{x \to 0}\rm  \frac{2 {sin}^{2} \dfrac{x}{2} }{ {x}^{2} }  \\

\rm \: =  \: \dfrac{1}{4}  \displaystyle\lim_{x \to 0}\rm  \frac{ {sin}^{2} \dfrac{x}{2} }{ {x}^{2} }  \\

\rm \: =  \: \dfrac{1}{4}  \displaystyle\lim_{x \to 0}\rm  \frac{ {sin} \dfrac{x}{2} \times {sin} \dfrac{x}{2} }{ \dfrac{x}{2} \times  \dfrac{x}{2}  \times 4}  \\

\rm \: =  \: \dfrac{1}{16}  \displaystyle\lim_{x \to 0}\rm   \frac{{sin} \dfrac{x}{2}}{ \dfrac{x}{2} } \times \displaystyle\lim_{x \to 0}\rm   \frac{{sin} \dfrac{x}{2}}{ \dfrac{x}{2} }   \\

We know,

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} \:  =  \: 1 \: }} \\

So, using this result, we get

\rm \: =  \: \dfrac{1}{16} \times 1 \times 1 \\

\rm \: =  \: \dfrac{1}{16} \\

Hence,

\rm\implies \: \:\boxed{\sf{  \:  \: \rm \: \displaystyle\lim_{x \to 0}\rm  \frac{tanx - sinx}{ {8x}^{3} }  \:  =  \:  \frac{1}{16}  \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Short Cut Trick :- Remember

\boxed{\sf{ \:   \:\displaystyle\lim_{x \to 0}\rm  \frac{1 - cosx}{ {x}^{2} }  =  \frac{1}{2}  \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} \:  =  \: 1 \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} \:  =  \: 1 \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} \:  =  \: loga \: }} \\

Answered by amannscharlie
1
  • refer attachment for detailed answer
Attachments:
Similar questions