Math, asked by kanchanavinoth, 9 months ago

Solve the following linear equation:
(x+2)/3-(x+1)/5=(x-3)/4-1

Answers

Answered by Anonymous
3

Step-by-step explanation:

This will surely help you

Attachments:
Answered by Saby123
2

Solution -

  \sf{ \dfrac{(x + 2)}{3}  -  \dfrac{(x + 1)}{5} \:  =  \dfrac{(x - 3)}{4} - 1} \\  \\  \sf{\dfrac{(x + 2)}{3}  -  \dfrac{(x + 1)}{5} -\dfrac{(x - 3)}{4} =  - 1 } \\  \\  \sf{taking \: lcm \: } \:  \\  \\  \sf{ \implies{ \dfrac{20(x + 2) - 12(x + 1) - 15(x - 3)}{60} =   - 1}} \\  \\ \sf{ \implies{ \dfrac{2x + 20 - 12 x- 12  - 15x + 45}{60} =  - 1}} \\  \\  \sf{  \implies{  \dfrac{- 25x + 53}{60} =  - 1}} \\  \\  \sf{ \implies{ - 25x + 53 =  - 60}}   \\  \\  \sf{ \implies{ - 25x =  - 113}} \:  \: \\  \\  \sf{ \implies{x =  \dfrac{113}{25}}} \: ......(a)

Similar questions