Math, asked by 123Mazeisfree, 1 month ago

Solve the following linear inequation and represent the solution set on a number line:
2x − 3 < x +1 ≤ 4x + 7, x ∈ W

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given linear inequality is

\rm :\longmapsto\:2x - 3 &lt; x + 1 \leqslant 4x + 7

Consider,

\rm :\longmapsto\:2x - 3 &lt; x + 1

On Subtracting x, from both sides, we get

\rm :\longmapsto\:2x - 3 - x &lt; x + 1  - x

\rm :\longmapsto\:x - 3 &lt; 1

On adding 3 both sides, we get

\rm :\longmapsto\:x - 3  + 3&lt; 1 + 3

\bf :\longmapsto\:x &lt; 4 -  -  - (1)

Now, Consider

\rm :\longmapsto\: x + 1 \leqslant 4x + 7

On Subtracting 4x, we get

\rm :\longmapsto\: x + 1 - 4x \leqslant 4x + 7 - 4x

\rm :\longmapsto\: 1 - 3x \leqslant 7

On Subtracting 1, we get

\rm :\longmapsto\: 1 - 3x - 1 \leqslant 7 - 1

\rm :\longmapsto\: -  3x \leqslant 6

\bf\implies \:x \geqslant  - 2 -  -  -  - (2)

From equation (1) and (2), we concluded

\bf\implies \: - 2 \leqslant x &lt; 4

As, it is given that

\rm :\longmapsto\:\boxed{ \tt{ \: x \:  \in \: W \: }}

\bf\implies \:x \:  =  \:  \{0,1,2,3 \}

More to know :-

\boxed{ \tt{ \: x &gt; y \: \rm \implies\: - x \:  &lt;  \:  - y \: }}

\boxed{ \tt{ \: x  &lt;  y \: \rm \implies\: - x \:   &gt;   \:  - y \: }}

\boxed{ \tt{ \: -  x  &lt;  y \: \rm \implies\: x \:   &gt;   \:  - y \: }}

\boxed{ \tt{ \: -  x  &lt; -   y \: \rm \implies\: x \:   &gt;   \:  y \: }}

\boxed{ \tt{ \:  |x| &lt; y \:  \: \rm \implies\: \:  - y &lt; x &lt; y \:  \: }}

\boxed{ \tt{ \:  |x|  \leqslant  y \:  \: \rm \implies\: \:  - y  \leqslant  x  \leqslant  y \:  \: }}

\boxed{ \tt{ \:  |x| &gt; y \:  \: \rm \implies\: \: x &lt;  - y \:  \: or \:  \: x &gt; y \: }}

\boxed{ \tt{ \:  |x|  \geqslant  y \:  \: \rm \implies\: \: x  \leqslant   - y \:  \: or \:  \: x  \geqslant  y \: }}

Attachments:
Similar questions