. Solve the following linear programming problem graphically :
Maximise Z = 7.5x + 5y
Subject to 2x + y ≤ 60
2x + 3y ≤ 120
x ≤ 20, x, y ≥ 0
Answers
❥︎Solution :-
Maximise Z = 7.5x + 5y
Subject to 2x + y ≤ 60
2x + 3y ≤ 120
x ≤ 20, x, y ≥ 0
❥︎Step :- 1
Convert these inequalities to equations, we get
2x + y = 60.......(1)
2x + 3y = 120.....(2)
x = 20 ......(3)
❥︎From line (1), point lies on the line are
❥︎From line (2), points lies on the line are
Plot the lines on graph paper, we get the shaded region as feasible region.
❥︎ So, corner points of the feasible region are
0 (0, 0)
A (20, 0)
B (20, 20)
C (15, 30)
D (0, 40)
❥︎ To find the maximum value of Z, we need to find the value of Z at the corner points.
[tex]
\begin{gathered}\boxed{\begin{array}{ccccc}\sf Corner \: point&\sf value \: of \: Z&\sf\sf &\sf \\\frac{\quad \qquad\qquad}{}&\frac{\quad \qquad \qquad}{}&\\\sf 0 (0, 0)&\sf 0&\sf &\sf &\sf \\\\\sf A (20, 0) &\sf 150&\sf &\sf &\sf \\\\\sf B (20, 20) &\sf 250&\sf &\sf &\sf \\\\\sf C (15, 30)&\sf 212.5&\sf &\sf &\sf \\\\\sf D (0, 40)&\sf 200 &\sf &\sf &\sf \\\frac{\qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad}{}&\frac{\qquad\qquad\qquad}{}&\frac{\qquad \qquad\qquad}{}&\frac{\qquad \qquad\qquad}{}\\\sf \sf \ \sf \end{array}}\end{gathered}}
❥︎ So, it means
\bf \:Maximum \: Value \: of \: Z = 250 \: at \: B(20, 20).