Math, asked by evan3071, 6 months ago

solve the following linear system by elimination: 4x + 3y = 12 and 4x - y = 4

Answers

Answered by tusharyadav2020
1

Answer:

4x + 3y=12 and 4x - y =4

Step-by-step explanation:

subtracting both equations we get

4x-3y -4x +y = 12- 4

-2y = 8

y = -4

and

4x + 3×(-4) = 12

4x - 12 =12

4x = 24

x = 6

Answered by Mister360
3

Step-by-step explanation:

4x+3y=12 {\dots}{\dots}(1)

4x-y =4 {\dots}{\dots}(2)

Now

  • By multiplying -1 with eq (1) and 3 with eq (2) we get

4x+3y=12 {\dots }{\dots}(3)

-12x+3y=-12 {\dots}{\dots }(4)

\:\:{(+)}\:\;{(-)}\:\: {(+)}

_____________________________

By subtraction we get

{:}\longrightarrow16x=24

{:}\longrightarrowx={\dfrac {24}{16}}

{\therefore}{\underline{\boxed{\bf {x={\dfrac {3}{2}}}}}}

  • Substitute the value of x in eq (2)

{:}\longrightarrow4 ({\dfrac {3}{2}})-y=4

{:}\longrightarrow{\dfrac {12}{2}}-y=4

{:}\longrightarrow6-y=4

{:}\longrightarrow-y=4-6

{:}\longrightarrow-y=-2

\therefore{\underline{\boxed{\bf {y=2}}}}

\thereforeYour answer is{\boxed {(x,y)=({\dfrac {3}{2}}\:,\:2)}}

Similar questions