Math, asked by deepak261120, 10 months ago

Solve the following ordinary differential equations:

a) (dy)/(dx)+y cot x=e^(cos x)
for x=(pi)/(2), y=-2

b) (d^(2)y)/(dx^(2))+(dy)/(dx)+y=0.​

Answers

Answered by sanjeevk28012
41

Answer:

The solution of differential equation is \dfrac{e^{cos x}}{sin x} - \dfrac{- 3}{sin x}

Step-by-step explanation:

Given differential equation as :

\dfrac{dy}{dx} + y cot x = e^{cosx}

The linear differential equation form as

\dfrac{dy}{dx} + p(x) y = q(x)

Integrating equation IE = e^{\int p(x)d x}

Or, IE = e^{\int cotx dx}

or, IE = e^{ln sinx}

Or, IE = sin x

Now,

Solution

y . IF = ∫( q(x) . IF ) dx

i.e y . sin x = ∫( e^{cosx} . sin x ) dx

Or,              Let cos x = t

So, \dfrac{dcosx}{dx} = \dfrac{dt}{dx}

Or,  - sin x dx = dt

i.e y . sin x = ∫ e^{t} dt

Or, y sin x = e^{t} + c

i.e y sin x = e^{cos x} + c

According to question

for x = \dfrac{\pi }{2}  and y = - 2

i.e ( - 2)  sin \dfrac{\pi }{2}  = e^{cos\frac{\pi }{2}  } + c

Or, - 2 × 1 = e^{0} + c

or, - 2 = 1 + c

i.e  c = - 2 - 1

∴   c = - 3

So, y sin x = e^{cos x} - 3

Or, y = \dfrac{e^{cos x}}{sin x} - \dfrac{- 3}{sin x}

Hence The solution of differential equation is \dfrac{e^{cos x}}{sin x} - \dfrac{- 3}{sin x}  Answer

Answered by aweshktr
8

Answer:

Step-by-step explanation:

Similar questions