Math, asked by singh600, 10 months ago

solve the Following pair of equation by reducing to a pair of linear equation by substitution method.?????
1. 1/2x+ 1/3y = 2 and
1/3x +1/2y = 13/6​

Answers

Answered by Delta13
2

Given:

 \frac{1}{2x}  +  \frac{1}{3y}  = 2 \\  \\  \frac{1}{3x}  +  \frac{1}{2y}  =  \frac{13}{6}

Solution:

 \texttt{Let } \frac{1}{x}  \texttt{ = p } \:  \\ \\  \texttt{and} \:  \frac{1}{y}   \texttt{ = q}

So our equations become,

 \frac{1}{2} p +  \frac{1}{3} q = 2 \:  -  -  (1) \\  \\  \frac{1}{3} p +  \frac{1}{2} q =  \frac{13}{6}  -  - (2)

Taking LCM and simplifying first equation.

 =  >  \frac{1}{2} p +  \frac{1}{3} q = 2 \\  \\  =  >  \frac{3p + 2q}{2 \times 3}  = 2 \\  \\  =  >  \frac{3p + 2q}{6}  = 2 \\  \\  =  > 3p + 2q = 12 -  - (3)

Now with second equation

 =  >  \frac{1}{3} p +  \frac{1}{2} q =  \frac{13}{6}  \\  \\  =  >  \frac{2p + 3q}{3 \times 2}  =  \frac{13}{6}  \\  \\  =  >  \frac{2p + 3q}{6}  =  \frac{13}{6}  \\  \\  =  > 2p + 3q =  \frac{13}{ \cancel6}  \times  \cancel{6} \\  \\  =  > 2p + 3q = 13 \:  -  - (4)

Our equations are

3p + 2q = 12 \:  \: ....(3) \\  2p + 3q = 13 \:  \: ....(4)

From third equation

3p + 2q = 12 \\ 3p = 12 - 2q \\  \\ p =  \frac{12 - 2q}{3} \:  \:   .......(5)

Putting the value of p in equation (4)

 =  > 2 \left( \frac{12 - 2q}{3}  \right) + 3q = 13 \\  \\  =  >  \frac{24 - 4q}{3}  + 3q = 13 \\   \\  \texttt{Taking  LCM}\\ \\   =  >  \frac{24 - 4q + 3q(3)}{3}  = 13 \\  \\  =  >  \frac{24 - 4q + 9q}{3}  = 13 \\  \\  =  >  \frac{24 + 5q}{3}  = 13 \\  \\  =  > 24 + 5q = 13 \times 3 \\  \\  =  > 24 + 5q = 39 \\  \\  =  > 5q = 39 - 24 \\  \\  =  > 5q = 15 \\  \\  =  > q =  \frac{15}{5}  \\  \\  =  > q = 3

Putting the value of q in equation (5)

p =  \frac{12 - 2q}{3}  \\  \\  =   \frac{12 - 2 \times 3}{3}  \\  \\  = \frac{12 - 6}{3}   \\  \\  =  \frac{6}{3}  \\  \\  =  > p = 2

Hence, the value of p =2 and q =3

 \texttt{But  we  know that} \\  \frac{1}{x}  = p \\  \\  \frac{1}{y}  = q

Therefore,

 \frac{1}{x}  = p \\  \\  =  >  \frac{1}{x}  = 2 \\  \\  =  > x =  \frac{1}{2}  \\  \\  \texttt{and} \\  \\  \frac{1}{y}  = q \\  \\  =  >  \frac{1}{y}  = 3 \\  \\  =  > y =  \frac{1}{3}

 \texttt{So,  x} =  \frac{1}{2}    \: \texttt{and y = } \frac{1}{3}

Similar questions