Math, asked by SiriFF, 2 months ago

Solve the following pair of equations 5/x+y + 2/x-y =3 , 15/x+y - 4/x-y = -1

Answers

Answered by 12thpáìn
83

\begin{gathered}\frak{Given}\begin{cases}{ \sf \dfrac{5}{x + y}   +  \dfrac{2}{x - y}  = 3 }\\\\\\{ \sf \dfrac{15}{x + y}    -   \dfrac{4}{x - y}  =  (- 1) }\end{cases}\end{gathered}

To Find

  • \\ \sf \:  \:  \: x \:  \:  \: and \:  \:  \: y\\

Solution

  • \\{ \sf \dfrac{5}{x + y}   +  \dfrac{2}{x - y}  = 3   \:  \:  \:  \:  \:  -  -  -  - (1)}\\
  • { \sf \dfrac{15}{x + y}    -   \dfrac{4}{x - y}  =  -1  \:  \:  \:  \:  \:  -  -  -  - (2)}\\

Let

\\ \sf \dfrac{1}{x + y}  = a \:  \:  \:  \:  \: \:  \: , \:  \:  \:  \:  \:   \dfrac{1}{x - y}  = b \\  \\  \\

  • Putting a and b in both Equations 1 and 2 we get

\\ \sf5a + 2b = 3 \:  \:  \:  \:  \:  \:  -  -  -  - (3)

\\ \sf15a - 4b =  - 1 \:  \:  \:  \:  \:  \:  -  -  -  - (4)\\

From Equation 3 we get

 \\\sf~~~~~~~:~~\implies 5a + 2b = 3

  • Subtracting Both sides by -5a

\\\sf ~~~~~~~:~~\implies 5a - 5a + 2b = 3 - 5a\\

\sf ~~~~~~~:~~\implies  2b = 3 - 5a\\

  • Dividing Both sides by 2

\\\sf  ~~~~~~~:~~\implies 2b  \div 2=( 3 - 5a )\div 2\\

\\\sf~~~~~~~:~~\implies    \pink{b = \dfrac{( 3 - 5a ) }{2}}\\

  • Putting b in Equation 4

\\\sf~~~~~~~:~~\implies 15a - 4 \left( \dfrac{3 - 5a}{2}  \right) =  - 1

\sf~~~~~~~:~~\implies 15a - \dfrac{12- 20a}{2}   =  - 1

\sf ~~~~~~~:~~\implies \dfrac{30a - 12 + 20a}{2}   =  - 1

\sf ~~~~~~~:~~\implies 50a - 12  =  - 2

\sf ~~~~~~~:~~\implies 50a  =  - 2  + 12

\sf ~~~~~~~:~~\implies 50a  =  10

\sf ~~~~~~~:~~\implies a  =   \dfrac{10}{50}

\sf ~~~~~~~:~~\implies \pink{a  =   \dfrac{1}{5}}\\

Putting value of a in Equation 3

 \sf~~~~~~~:~~\implies 5 \times  \dfrac{1}{5}  + 2b = 3

\sf~~~~~~~:~~\implies 1  + 2b = 3

\sf~~~~~~~:~~\implies  2b = 3 - 1

\sf~~~~~~~:~~\implies  2b = 2

\sf~~~~~~~:~~\implies  b = 1\\\\

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c | }  \\ \qquad&\qquad \\  \sf  a  \implies  \dfrac{1}{5} =\dfrac{1}{x + y}   & \sf  b  \implies  1 =\dfrac{1}{x  - y}  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf \: x + y = 5&  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf x - y = 1\end{array}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\\

Let

\\ \sf \: x + y = 5 \:  \:  \:  \:  \:  \:   -  -  -  - (5)

 \sf \: x - y = 1 \:  \:  \:  \:  \:  \:  -  -  -  - (6)

  • On Solving Equation 5

 \sf ~~~~~~~:~~\implies \: x + y = 5

\sf ~~~~~~~:~~\implies \: x  = 5 - y

  • Putting x in Equation 6

\sf~~~~~~~:~~\implies  \:  5 - y - y = 1

\sf~~~~~~~:~~\implies  \:   - 2y = 1 - 5

\sf~~~~~~~:~~\implies  \:   - 2y =  - 4

\sf ~~~~~~~:~~\implies \:   y = 2

  • Putting y = 2 in Equation 6

 \sf ~~~~~~~:~~\implies \: x - y = 1

\sf ~~~~~~~:~~\implies \: x - 2= 1

\sf ~~~~~~~:~~\implies \: x =  2 + 1

\sf ~~~~~~~:~~\implies \: x =  3

  • Hance The value of x and y are 3 and 2 respectively.
Similar questions