Math, asked by Anonymous, 1 year ago

Solve the following pair of equations
a) 2x+ 3y=40 , 2x+ 6y=60
b) 5x+ 2y=20 , 2x+3y=19

Answers

Answered by tavilefty666
120

Answer:

In the first set of equation, x=10\ and\ y=\frac{20}{3}\ and\ for\ the\ 2nd\ set\ of\ equations,\ x=2\ and\ y=5

Step-by-step explanation:

The question is related to linear equation in one variable.

There are three ways in which this can be solved.

Well, I'll use only one method.

The pair of equations is

2x+3y=40 --(1)

2x+6y=60 --(2)

Now, simply subtract eq. 1 from eq. 2

2x-2x+6y-3y=60-40\\ 3y=20\\ y=\frac{20}{3}\\ \therefore y=\frac{20}{3}\\ \\ putting\ value\ of\ y\ in\ eq.\ 1 \\ 2x+3\times \frac{20}{3}=40 \\ \\ \implies 2x+20=40\\ 2x=20 \\ \implies x=10

Coming to the second question

The set of equations is

5x+ 2y=20 --(1)

2x+3y=19 --(2)

Now, multiply eq. (1) by 3 and eq. (2) by 2

15x+6y=60 --(3)

4x+6y=38 --(4)

Now, subtract eq. (4) by eq. (3)

 15x-4x+6y-6y=60-38\\ 11x=22\\ \implies \therefore x=2

Putting x=2 in eq. (3)

(15×2)+6y=60

30+6y=60

6y=30

y=5


tavilefty666: thanks @bhavana
Anonymous: Nice :)
tavilefty666: thanks @sachin bro
tavilefty666: ok, sorry
YouSucks: hey dude @baditya here
Anonymous: awesome answer bro!!
tavilefty666: thanks
Answered by AbhijithPrakash
84

Answer:

(a) 2x+3y=40,\:2x+6y=60\quad :\quad y=\dfrac{20}{3},\:x=10

(b) 5x+2y=20,\:2x+3y=19\quad :\quad y=5,\:x=2

Step-by-step explanation:

(a)                    \mathrm{Graph\:1}

\begin{bmatrix}2x+3y=40\\ 2x+6y=60\end{bmatrix}

\mathrm{Isolate}\:x\:\mathrm{for}\:2x+3y=40

2x+3y=40

\mathrm{Subtract\:}3y\mathrm{\:from\:both\:sides}

2x+3y-3y=40-3y

\mathrm{Divide\:both\:sides\:by\:}2

\dfrac{2x}{2}=\dfrac{40}{2}-\dfrac{3y}{2}

\mathrm{Simplify}

x=\dfrac{40-3y}{2}

\mathrm{Subsititute\:}x=\dfrac{40-3y}{2}

\begin{bmatrix}2\cdot \dfrac{40-3y}{2}+6y=60\end{bmatrix}

\mathrm{Isolate}\:y\:\mathrm{for}\:2\dfrac{40-3y}{2}+6y=60

2\cdot \dfrac{40-3y}{2}+6y=60

2\cdot \dfrac{40-3y}{2}

\mathrm{Multiply\:fractions}:\quad \:a\cdot \dfrac{b}{c}=\dfrac{a\:\cdot \:b}{c}

=\dfrac{\left(40-3y\right)\cdot \:2}{2}

\mathrm{Cancel\:the\:common\:factor:}\:2

=40-3y

40-3y+6y=60

\mathrm{Add\:similar\:elements:}\:-3y+6y=3y

40+3y=60

\mathrm{Subtract\:}40\mathrm{\:from\:both\:sides}

40+3y-40=60-40

\mathrm{Simplify}

3y=20

\mathrm{Divide\:both\:sides\:by\:}3

\dfrac{3y}{3}=\dfrac{20}{3}

\mathrm{Simplify}

y=\dfrac{20}{3}

\mathrm{For\:}x=\dfrac{40-3y}{2}

\mathrm{Subsititute\:}y=\dfrac{20}{3}

x=\dfrac{40-3\cdot \dfrac{20}{3}}{2}

\dfrac{40-3\cdot \dfrac{20}{3}}{2}

=\dfrac{40-20}{2}

\mathrm{Subtract\:the\:numbers:}\:40-20=20

=\dfrac{20}{2}

\mathrm{Divide\:the\:numbers:}\:\dfrac{20}{2}=10

x=10

\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}

y=\dfrac{20}{3},\:x=10

(b)                    \mathrm{Graph\:2}

\begin{bmatrix}5x+2y=20\\ 2x+3y=19\end{bmatrix}

\mathrm{Isolate}\:x\:\mathrm{for}\:5x+2y=20

\mathrm{Subsititute\:}x=\dfrac{20-2y}{5}

\begin{bmatrix}2\cdot \dfrac{20-2y}{5}+3y=19\end{bmatrix}

\mathrm{Isolate}\:y\:\mathrm{for}\:2\dfrac{20-2y}{5}+3y=19

2\cdot \dfrac{20-2y}{5}+3y=19

\mathrm{Expand\:}2\cdot \dfrac{20-2y}{5}+3y

2\cdot \dfrac{20-2y}{5}+3y

2\cdot \dfrac{20-2y}{5}

\mathrm{Multiply\:fractions}:\quad \:a\cdot \dfrac{b}{c}=\dfrac{a\:\cdot \:b}{c}

=\dfrac{\left(20-2y\right)\cdot \:2}{5}

\mathrm{Expand}\:\left(20-2y\right)\cdot \:2

=2\left(20-2y\right)

\mathrm{Apply\:the\:distributive\:law}:\quad \:a\left(b-c\right)=ab-ac

a=2,\:b=20,\:c=2y

=2\cdot \:20-2\cdot \:2y

\mathrm{Simplify}\:2\cdot \:20-2\cdot \:2y

\mathrm{Multiply\:the\:numbers:}\:2\cdot \:20=40

=40-2\cdot \:2y

\mathrm{Multiply\:the\:numbers:}\:2\cdot \:2=4

=40-4y

=\dfrac{40-4y}{5}

\mathrm{Convert\:element\:to\:fraction}:\quad \:3y=\dfrac{3y5}{5}

=\dfrac{40-4y}{5}+\dfrac{3y\cdot \:5}{5}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \dfrac{a}{c}\pm \dfrac{b}{c}=\dfrac{a\pm \:b}{c}

=\dfrac{40-4y+3y\cdot \:5}{5}

40-4y+3y\cdot \:5=40+11y

=\dfrac{40+11y}{5}

\mathrm{Apply\:the\:fraction\:rule}:\quad \dfrac{a\pm \:b}{c}=\dfrac{a}{c}\pm \dfrac{b}{c}

\dfrac{40+11y}{5}=\dfrac{40}{5}+\dfrac{11y}{5}

=\dfrac{40}{5}+\dfrac{11y}{5}

\mathrm{Divide\:the\:numbers:}\:\dfrac{40}{5}=8

=8+\dfrac{11y}{5}

8+\dfrac{11y}{5}=19

\mathrm{Multiply\:both\:sides\:by\:}5

8\cdot \:5+\dfrac{11y}{5}\cdot \:5=19\cdot \:5

\mathrm{Simplify}

40+11y=95

\mathrm{Subtract\:}40\mathrm{\:from\:both\:sides}

40+11y-40=95-40

\mathrm{Simplify}

11y=55

\mathrm{Divide\:both\:sides\:by\:}11

\dfrac{11y}{11}=\dfrac{55}{11}

\mathrm{Simplify}

y=5

\mathrm{For\:}x=\dfrac{20-2y}{5}

\mathrm{Subsititute\:}y=5

x=\dfrac{20-2\cdot \:5}{5}

\dfrac{20-2\cdot \:5}{5}

=\dfrac{10}{5}

\mathrm{Divide\:the\:numbers:}\:\dfrac{10}{5}=2

=2

x=2

\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}

y=5,\:x=2

Attachments:

Anonymous: Perfect brother
Anonymous: It's too great @abhi Sir ☺☺☺
S4MAEL: great
MadamCurie: outstanding effort..!! awesome! !
Anonymous: nice answer! ❤️ @abhijit..
Anonymous: Awesome answer @Abhijit !!
Anonymous: .. i am right you are wasting your time by giving thus type of ans . and tell me if you are correct that what is benefit after writing this ans tell me ⭐
Similar questions