Math, asked by mgdeepa858, 5 hours ago

solve the following pair of equations by graphical method as well as elimination method. 1. 2x+ y= 6 , 2x-y=2 ​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:2x + y = 6 -  -  - (1)

and

\rm :\longmapsto\:2x  -  y = 2 -  -  - (2)

 \green{\large\underline{\sf{Solution-using \:graphical \: method }}}

Consider first equation

\rm :\longmapsto\:2x + y = 6

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 6 \\ \\ \sf 3 & \sf 0 \end{array}} \\ \end{gathered}

Consider, Second equation

\rm :\longmapsto\:2x  -  y = 2

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf  - 2 \\ \\ \sf 1 & \sf 0 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points

➢ See the attachment graph.

So, Solution of pair of linear equations is

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:-\begin{cases} &\sf{x = 2} \\  \\ &\sf{y = 2} \end{cases}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \red{\large\underline{\sf{Solution-elimination \: method}}}

Given pair of linear equations are

\rm :\longmapsto\:2x + y = 6 -  -  - (1)

and

\rm :\longmapsto\:2x  -  y = 2 -  -  - (2)

On adding equation (1) and (2), we get

\rm :\longmapsto\:4x = 8

\rm :\longmapsto\:x = 2

On substituting x = 2, in equation (1) we get

\rm :\longmapsto\:2(2) + y = 6

\rm :\longmapsto\:4 + y = 6

\rm :\longmapsto\:y = 6 - 4

\rm :\longmapsto\:y = 2

So, Solution of pair of linear equations is

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:-\begin{cases} &\sf{x = 2} \\  \\ &\sf{y = 2} \end{cases}\end{gathered}\end{gathered}

Attachments:
Answered by EmperorSoul
17

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:2x + y = 6 -  -  - (1)

and

\rm :\longmapsto\:2x  -  y = 2 -  -  - (2)

 \green{\large\underline{\sf{Solution-using \:graphical \: method }}}

Consider first equation

\rm :\longmapsto\:2x + y = 6

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 6 \\ \\ \sf 3 & \sf 0 \end{array}} \\ \end{gathered}

Consider, Second equation

\rm :\longmapsto\:2x  -  y = 2

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf  - 2 \\ \\ \sf 1 & \sf 0 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points

➢ See the attachment graph.

So, Solution of pair of linear equations is

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:-\begin{cases} &\sf{x = 2} \\  \\ &\sf{y = 2} \end{cases}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \red{\large\underline{\sf{Solution-elimination \: method}}}

Given pair of linear equations are

\rm :\longmapsto\:2x + y = 6 -  -  - (1)

and

\rm :\longmapsto\:2x  -  y = 2 -  -  - (2)

On adding equation (1) and (2), we get

\rm :\longmapsto\:4x = 8

\rm :\longmapsto\:x = 2

On substituting x = 2, in equation (1) we get

\rm :\longmapsto\:2(2) + y = 6

\rm :\longmapsto\:4 + y = 6

\rm :\longmapsto\:y = 6 - 4

\rm :\longmapsto\:y = 2

So, Solution of pair of linear equations is

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:-\begin{cases} &\sf{x = 2} \\  \\ &\sf{y = 2} \end{cases}\end{gathered}\end{gathered}

Similar questions