Math, asked by aryan021212, 11 hours ago

Solve the following pair of equations for x and y

 {4}^{sinx}  +  {3}^{secy}  = 11 \\  \\ 5. {16}^{sinx}  - 2. {3}^{secy} = 2

Answers

Answered by mathdude500
19

\large\underline{\sf{Solution-}}

Given pair of equations are

\rm \:  {4}^{sinx} +  {3}^{secy} = 11 -  -  - (1)

and

\rm \: 5. {16}^{sinx} - 2. {3}^{secy} = 2

can be rewritten as

\rm \: 5. {( {4}^{2}) }^{sinx} - 2. {3}^{secy} = 2

can be further rewritten as

\rm \: 5. {( {4}^{sinx}) }^{2} - 2. {3}^{secy} = 2 -  -  -  - (2)

Let assume that

\rm \:  {4}^{sinx} = u \:  \: and \:  \:  {3}^{secy} = v -  -  -  - (3)\bigg[\rm\implies \:u,v > 0\bigg]

So, equation (1) and (2), can be rewritten as

\rm \: u + v = 11 -  -  -  - (4)

and

\rm \:  {5u}^{2} - 2v = 2

On substituting the value of v from equation (4), we get

\rm \:  {5u}^{2} - 2(11 - u) = 2

\rm \:  {5u}^{2} - 22 + 2u = 2

\rm \:  {5u}^{2}+ 2u  - 24= 0

\rm \:  {5u}^{2}+ 12u - 10u  - 24= 0

\rm \: u(5u + 12) - 2(5u + 12) = 0

\rm \: (5u + 12)(u - 2) = 0

\rm\implies \:u \:  =  \: 2 \:  \:  \: or \:  \: u =  - \dfrac{5}{12} \{rejected \: as \: u > 0 \}

On substituting u = 2 in equation (4), we get

\rm \: 2 + v = 11

\rm\implies \:v = 9

So, we have

\begin{gathered}\begin{gathered}\bf\: \begin{cases} &\bf{u \:  =  \: 2} \\  \\ &\bf{v \:  =  \: 9} \end{cases}\end{gathered}\end{gathered} \\

Now, Consider

\rm \: u = 2

\rm \:  {4}^{sinx} = 2

\rm \:  {2}^{2sinx} =  {2}^{1}

\rm\implies \:2sinx = 1

\rm\implies \:sinx = \dfrac{1}{2}

\rm\implies \:sinx = sin\dfrac{\pi}{6}

We know,

\boxed{\tt{  \: sinx = siny  \:  \: \rm\implies \: \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z}}

So, using this result, we get

\rm\implies \:x = n\pi + {( - 1)}^{n}\dfrac{\pi}{6}\: \forall \: n \in \: Z

Now, Consider

\rm \: v = 9

\rm \:  {3}^{secy} = 9

\rm \:  {3}^{secy} =  {3}^{2}

\rm\implies \:secy = 2

\rm\implies \:cosy = \dfrac{1}{2}

\rm\implies \:cosy =cos \dfrac{\pi}{3}

We know,

\boxed{\tt{  \: cosx = cosy  \:  \: \rm\implies \: \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z \: }}

So, using this result, we get

\rm\implies \:y = 2p\pi \pm \: \dfrac{\pi}{3}\: \forall \: p \in \: Z

So, Solution set of simultaneous equations are

\begin{gathered}\begin{gathered}\bf\: \begin{cases} &\bf{x = n\pi + {( - 1)}^{n}\dfrac{\pi}{6}\: \forall \: n \in \: Z} \\ \\  &\bf{y = 2p\pi \pm \: \dfrac{\pi}{3}\: \forall \: p \in \: Z} \end{cases}\end{gathered}\end{gathered} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Similar questions
Physics, 6 hours ago