Math, asked by arorativrta, 1 year ago

Solve the following pair of linear equation by substitution method: 2x-y= -10; -6x+3= 30.

Answers

Answered by AbhijithPrakash
13

Answer:

2x-y=-10,\:-6x+3=30\quad :\quad y=1,\:x=-\dfrac{9}{2}

Step-by-step explanation:

\begin{bmatrix}2x-y=-10\\ -6x+3=30\end{bmatrix}

\black{\mathrm{Isolate}\:x\:\mathrm{for}\:-6x+3=30}

-6x+3=30

\gray{\mathrm{Subtract\:}3\mathrm{\:from\:both\:sides}}

-6x+3-3=30-3

\gray{\mathrm{Simplify}}

-6x=27

\gray{\mathrm{Divide\:both\:sides\:by\:}-6}

\dfrac{-6x}{-6}=\dfrac{27}{-6}

\gray{\mathrm{Simplify}}

x=-\dfrac{9}{2}

\gray{\mathrm{Subsititute\:}x=-\dfrac{9}{2}}

\begin{bmatrix}2\left(-\dfrac{9}{2}\right)-y=-10\end{bmatrix}

\black{\mathrm{Isolate}\:y\:\mathrm{for}\:2\left(-\dfrac{9}{2}\right)-y=-10}

2\left(-\dfrac{9}{2}\right)-y=-10

\gray{\mathrm{Remove\:parentheses}:\quad \left(-a\right)=-a}

-2\cdot \dfrac{9}{2}-y=-10

\gray{2\cdot \dfrac{9}{2}=9}

-9-y=-10

\gray{\mathrm{Add\:}9\mathrm{\:to\:both\:sides}}

-9-y+9=-10+9

\gray{\mathrm{Simplify}}

-y=-1

\gray{\mathrm{Divide\:both\:sides\:by\:}-1}

\dfrac{-y}{-1}=\dfrac{-1}{-1}

\gray{\mathrm{Simplify}}

y=1

\gray{\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}}

y=1,\:x=-\dfrac{9}{2}

Similar questions