solve the following pair of linear equation for two variable for x and y . 2(ax-by)+(a+4b)=0 and 2(bx+ay)+(b-4a)
Answers
Answer:
Solution :
The given equations may be written as
2ax−2by=−a−4b 2ax-2by=-a-4b… (i)
2bx+2ay=4a−b 2bx+2ay=4a-b… (ii)
Multiplying (i) by a and (ii) by b and adding , we get
(2a2+2b2)x=(−a2−b2)(2a2+2b2)x=(-a2-b2)
⇒2(a2+b(2))x=−(a2+b2)⇒x=−12⇒2(a2+b(2))x=-(a2+b2)⇒x=-12
Putting x=−12x=-12 in (i), we get
2a×(−12)−2by=−a−4b2a×(-12)-2by=-a-4b
⇒−a−2by=−a−4b⇒-a-2by=-a-4b
⇒2by=4b⇒y=4b2b=2⇒2by=4b⇒y=4b2b=2
Hence, x=−12andy=2
Answer:
The given equations may be written as
2ax−2by=−a−4b 2ax-2by=-a-4b… (i)
2bx+2ay=4a−b 2bx+2ay=4a-b… (ii)
Multiplying (i) by a and (ii) by b and adding , we get
(2a2+2b2)x=(−a2−b2)(2a2+2b2)x=(-a2-b2)
⇒2(a2+b(2))x=−(a2+b2)⇒x=−12⇒2(a2+b(2))x=-(a2+b2)⇒x=-12
Putting x=−12x=-12 in (i), we get
2a×(−12)−2by=−a−4b2a×(-12)-2by=-a-4b
⇒−a−2by=−a−4b⇒-a-2by=-a-4b
⇒2by=4b⇒y=4b2b=2⇒2by=4b⇒y=4b2b=2
Hence, x=−12andy=2
Step-by-step explanation: