solve the following pair of linear equation X + Y = a + b and ax - b = a ^2 - b^2
Answers
Answered by
1
X = a
Y = b
Step-by-step explanation:
x+y−(a+b)=0
ax−by−(a² - b²)=0
By cross-multiplication, we get
−(a
2
−b
2
)−(−b)×−(a+b)
x
=
−(a
2
−b
2
)−a×−(a+b)
−y
=
1×−b−a×1
1
⇒
−a
2
+b
2
−ab−b
2
x
=
−a
2
+b
2
+a
2
+ab
−y
=
−b−a
1
⇒
−a(a+b)
x
=
b(a+b)
−y
=
−(a+b)
1
⇒
−a(a+b)
x
=
−b(a+b)
y
=
−(a+b)
1
⇒x=
−(a+b)
−a(a+b)
=a and y=
−(a+b)
−b(a+b)
=b
Similar questions
Math,
3 months ago
Math,
3 months ago
Social Sciences,
3 months ago
Social Sciences,
7 months ago
English,
7 months ago
Biology,
1 year ago
Biology,
1 year ago