Math, asked by as6018012, 1 month ago

solve the following pair of linear equations- (a-b) x + (a+b) y = a^2- 2ab- b^2 & (a+b) (x+y)= a^2+b^2​

Answers

Answered by sujithamanickam225
1

Answer:

(a−b)x+(a+b)y=a

2

−2ab−b

2

----- (i)

(a+b)(x+y)=a

2

+b

2

-------- (ii)

Subtracting eq (i) by eq (ii), we get.

⇒(a−b)x−(a+b)x=a

2

−2ab−b

2

−a

2

−b

2

⇒−2bx=−2bx(a+b)

⇒x=(a+b)

∴(a+b)(a+b+y)=a

2

+b

2

⇒(a+b)

2

+(a+b)y=a

2

+b

2

⇒y=

a+b

−2ab

Ans.

Answered by SnowRen
1

\huge{\mathscr{\fcolorbox{navy}{orange}{\color{darkblue}{Solution!}}}}

(a-b)x+(a+b)y=a^{2} -2ab-b^{2}_____(i)

(a+b)(x+y)=a^{2} +b^{2}

(a+b)x+(a+b)y=a^{2}+ b^{2}_________(ii)

subtracting equation (2) and (1),we obtain

(a-b)x-(a+b)x=(a^{2} -2ab-b^{2} )

(a-b-a-b)x=-2ab-2b^{2}

-2bx=-2b(a+b)

x=a+b

Using Equation (i),we obtain

(a-b)(a+b)+(a+b)=a^{2}- 2ab-b^{2}

a^{2} -b^{2} +(a+b)y=a^{2} -2ab-b^{2}

(a+b)y=-2ab

y=\frac{2ab}{(a+b)}

\huge\mathcal\colorbox{black}{{\color{red}{Hope\:It\:Helps}}}

Similar questions