solve the following pair of linear equations By cross multiplication method
(1). (a-b)x-(a+b)y=2a²-2b²;
(a+b)(x+y)=4ab
Answers
Answer:
x= a² - b² /b
y = 4ab ² / a³- b³ + a + b
Step-by-step explanation:
Step-by-step explanation:
(a-b) x + (a+b)y = 2a² -2b²
(a-b) x + (a+b)y = (2a² -2b²) ......(1)
(a + b ) (x+ y ) = 4ab
(a + b ) x +(a + b ) y = 4ab ......(2)
Now, by cross multiplication method
subtract the equation (2) from (1)
(a-b) x + (a+b)y = (2a² -2b²)
(a + b ) x +(a + b ) y = 4ab
= -2bx = (2a² -2b²) - 4ab
bx = (2a² -2b²) - 4ab /-2
bx = a² + b² - 2ab
bx = a² - b²
x= a² - b² /b
Substituting the value of (3) in equation 2
(a + b ) x +(a + b ) y = 4ab
(a + b ) a² - b² /b +(a + b ) y = 4ab
(a + b )(a + b )(a - b )/ b +(a + b )y = 4ab
y = 4ab ² / a³- b³ + a + b
Read more on brainly.in
Answer:
x= a² - b² /b
y = 4ab ² / a³- b³ + a + b
Step-by-step explanation:
(a-b) x + (a+b)y = 2a² -2b²
(a-b) x + (a+b)y = (2a² -2b²) ......(1)
(a + b ) (x+ y ) = 4ab
(a + b ) x +(a + b ) y = 4ab ......(2)
Now, by cross multiplication method subtract the equation (2) from (1)
(a-b) x + (a+b)y = (2a² -2b²)
(a + b ) x +(a + b ) y = 4ab
= -2bx = (2a² -2b²) - 4ab
bx = (2a² -2b²) - 4ab /-2
bx = a² + b² - 2ab
bx = a² - b²
x= a² - b² /b
Substituting the value of (3) in equation 2
(a + b ) x +(a + b ) y = 4ab
(a + b ) a² - b² /b +(a + b ) y = 4ab
(a + b )(a + b )(a - b )/ b +(a + b )y = 4ab
y = 4ab ² / a³- b³ + a + b
MARK THE BRAINLIEST