Math, asked by adityapatilsj, 9 months ago

solve the following pair of linear equations By cross multiplication method



(1). (a-b)x-(a+b)y=2a²-2b²;

(a+b)(x+y)=4ab​

Answers

Answered by swamygujjala68p2vykm
2

Answer:

x=  a² - b² /b

y = 4ab ² / a³- b³ + a + b

Step-by-step explanation:

Step-by-step explanation:

(a-b) x + (a+b)y = 2a² -2b²

(a-b) x + (a+b)y = (2a² -2b²)  ......(1)

(a + b ) (x+ y ) = 4ab

(a + b ) x +(a + b ) y = 4ab ......(2)

Now, by cross multiplication method

subtract the equation (2) from (1)

(a-b) x + (a+b)y = (2a² -2b²)  

(a + b ) x +(a + b ) y = 4ab

= -2bx  = (2a² -2b²)   - 4ab

bx =  (2a² -2b²)   - 4ab /-2

bx = a² + b² - 2ab

bx = a² - b²

x=  a² - b² /b

Substituting the value of (3) in equation 2

(a + b ) x +(a + b ) y = 4ab

(a + b )  a² - b² /b +(a + b ) y = 4ab

(a + b )(a + b )(a - b )/ b +(a + b )y = 4ab

y = 4ab ² / a³- b³ + a + b

Read more on brainly.in

Answered by athira05
0

Answer:

x=  a² - b² /b

y = 4ab ² / a³- b³ + a + b

Step-by-step explanation:

(a-b) x + (a+b)y = 2a² -2b²

(a-b) x + (a+b)y = (2a² -2b²)  ......(1)

(a + b ) (x+ y ) = 4ab

(a + b ) x +(a + b ) y = 4ab ......(2)

Now, by cross multiplication method subtract the equation (2) from (1)

(a-b) x + (a+b)y = (2a² -2b²)  

(a + b ) x +(a + b ) y = 4ab

= -2bx  = (2a² -2b²)   - 4ab

bx =  (2a² -2b²)   - 4ab /-2

bx = a² + b² - 2ab

bx = a² - b²

x=  a² - b² /b

Substituting the value of (3) in equation 2

(a + b ) x +(a + b ) y = 4ab

(a + b )  a² - b² /b +(a + b ) y = 4ab

(a + b )(a + b )(a - b )/ b +(a + b )y = 4ab

y = 4ab ² / a³- b³ + a + b

MARK THE BRAINLIEST

Similar questions