Math, asked by muskan2807, 11 months ago

 Solve the following pair of linear equations by cross - multiplication method.

(i)       (a + 2b)x + (2a - b) y = 2;

     and   (a - 2b)x + (2a + b) y = 3

(ii)          (a - b)x + (a + b)y = 2a² - 2b²

   and         (a + b) (x +y) = 4ab

    Ans.(i) x = (5b - 2a)10ab , y =( a +10b)10ab

           (ii)x =(2ab-a²+b²)b   y =(a-b)(a²+b²)b(a+b)
give correct answer and step wise then only it will be marked as brainlist ✌️

Answers

Answered by gchandracommercial
4

Answer:

(a-b) x + (a+b)y = 2a² -2b²

(a-b) x + (a+b)y = (2a² -2b²)  ......(1)

(a + b ) (x+ y ) = 4ab

(a + b ) x +(a + b ) y = 4ab ......(2)

Now, by cross multiplication method

subtract the equation (2) from (1)

(a-b) x + (a+b)y = (2a² -2b²)  

(a + b ) x +(a + b ) y = 4ab

= -2bx  = (2a² -2b²)   - 4ab

bx =  (2a² -2b²)   - 4ab /-2

bx = a² + b² - 2ab

bx = a² - b²

x=  a² - b² /b

Substituting the value of (3) in equation 2

(a + b ) x +(a + b ) y = 4ab

(a + b )  a² - b² /b +(a + b ) y = 4ab

(a + b )(a + b )(a - b )/ b +(a + b )y = 4ab

y = 4ab ² / a³- b³ + a + b

MARK AS "BRAINIEST" ANSWER.

Step-by-step explanation:

Answered by oindriladas98
6

Answer:

2 no. nhi mil raha

Step-by-step explanation:

sorry

Attachments:
Similar questions