Math, asked by Mohit981, 10 months ago

Solve the following pair of linear equations by substitution method.
2x + 3y = 13, 4x - y = – 9.​

Answers

Answered by anukeerthika34
2

Answer:

x=5

y=-1

Step-by-step explanation:

2x + 3y = 13 -  -  -  -  - eq1 \\ 4x - y =  - 9 -  -  -  -  -  eq2 \\ eq1 = x =  \frac{13 - 3y}{2}   -  -  - eq3 \\ using \: eq3 \: in \: eq2\\ 4( \frac{13 - 3y}{2} ) - y =  - 9 \\  \frac{52 - 12y - 2y}{2}  =  - 9 \\ 52 - 12y - 2y =  - 18 \\  - 14y =  - 70 \\ y = 5 \\ x =  \frac{13 - 3(5)}{2}  \\  \frac{13 - 15}{2}  \\ x =  \frac{ - 2}{2}  \\ x =  - 1

Answered by sachinarora2001
0

✨Question .

Solve the linear equation by substitution method.

2x+3y= 13

4x-y=-9

_______________

Method used ..

Substitution Method .

_______________

Solution..

2x + 3y = 13 .........(1) \\  \\ 4x - y =  - 9............(2) \\  \\  2x =  > 13 - 3y \\  \\ x =  >  \frac{13 - 3y}{2} .............(3) \\  \\  \\ put \: the \: value \: of \:  x \: in \: eq(2) \\  \\ 4( \frac{13 - 3y}{2})  - y =  - 9 \\  \\ 2(13 - 3y) - y =  - 9 \\  \\ 26 - 6y - y =  - 9 \\  \\ 26 - 7y =  - 9 \\  \\  - 7y =  - 9 - 26 \\  \\  - 7y =  - 35 \\  \\ y =  \frac{35}{7 }   \\  \\  \boxed{y =  >  5} \\  \\ put \: the \: value \: of \: y \: in \: eq \: (1) \\  \\ 2x + 3(5) = 13 \\  \\ 2x + 15 = 13 \\  \\ 2x = 13 - 15 \\  \\ 2x =  - 2 \\  \\ x =  \frac{ - 2}{2}  \\  \\  \boxed{x =  >  - 1}

_______________

Verification...

Put the values of x and y in equation (1)

2x + 3y = 13 \\  \\ 2( - 1) + 3(5) = 13 \\  \\  - 2 + 15 = 13 \\  \\ 13 = 13 \\  \\ hence \: verified \:  \:  \: ........

_______________

Hope it's helps you

_______________

Thanks☺️

Similar questions