Math, asked by shakthisowmiyasp2005, 10 months ago

Solve the following pair of linear equations by substitution and elimination method
3x + 2y = 10 and 2x -2y = 2

Answers

Answered by Anonymous
17

\large{\underline{\bf{\blue{Given:-}}}}

  • ✦ equations:- 3x +2y = 10
  • ✦ 2x - 2y = 2

\large{\underline{\bf{\blue{To\:Find:-}}}}

✦ value of x and y .

\huge{\underline{\tt{\purple{Solution:-}}}}

By substitution method :-

 \\\longmapsto  \: 3x + 2y = 10.........(i)

 \longmapsto  \: 2x - 2y = 2.........(ii)

from eq. (i) :-

 \\\longmapsto  \:3x = 10 -2y

 \longmapsto  \: x =( 10 - 2y)/3.....(iii)

substituting value of x in equation (ii):-

\\ \longmapsto  \: 2x - 2y = 2

 \longmapsto  \: \sf\: 2 \times ( \frac{10 - 2y}{3} ) - 2y = 2 \\  \\ \longmapsto  \: \sf \frac{20 - 4y}{3} = 2 + 2y \\  \\ \longmapsto  \: \sf  \: 20 - 4y = 6 + 6y \\  \\\longmapsto  \: \sf \:20 - 6 = 6y + 4y \\  \\ \longmapsto  \: \sf \: 14 = 10y \\  \\ \longmapsto  \: \sf \:y =   \cancel\frac{14}{10} \\  \\ \longmapsto  \: \sf \:y =  \frac{7}{5}   \\\\

substituting value of y in (ii)

 \longmapsto  \rm\:2x - 2y = 2\: \\  \\\longmapsto  \rm\:2x - 2( \frac{7}{5} ) = 2 \\  \\ \longmapsto  \rm\:2x -  \frac{14}{5}  = 2 \\  \\ \longmapsto  \rm\: \frac{10x - 14}{5}  = 2 \\  \\\longmapsto  \rm\:10x - 14 = 10 \\  \\ \longmapsto  \rm\:10x = 24 \\  \\ \longmapsto  \rm\:x =  \frac{24}{10}  \\  \\  \longmapsto  \rm\:x =  \frac{12}{5} \\\\

By elimination method:-

 \longmapsto  \: 3x + 2y = 10.........(i)

 \longmapsto  \: 2x - 2y = 2.........(ii)

   \rm\:3x + 2y = 10 \\ \rm\:2x - 2y = 2 \\ \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }\: \\\rm\:5x \:  \:  \:  \:  \:  \:  \:  \:   \:  \: = 12 \\  \\\bf\: \:\: x   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{12}{ 5} \\\\

putting value of x in equation (ii)

 \longmapsto  \rm\:2x - 2y = 2\: \\  \\  \longmapsto  \rm\:2 \times  \frac{12}{5}   = 2 + 2y \\  \\ \longmapsto  \rm\: \frac{24}{5}   - 2 = 2y \\  \\  \longmapsto  \rm\: \frac{24 - 10}{5}    = 2y \\  \\ \longmapsto  \rm\: \frac{14}{10}  = y \\  \\  \longmapsto  \bf\: y =  \frac{7}{5} \: \\\\

Hence,

  • x = 12/5
  • y = 7/5

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
9

Solution

Given :-

  • Equation, 3x + 2y = 10 ---------Equ(1)
  • 2x - 2y = 2 ---------------Equ(2)

Find :-

  • Value of x & y by , substitution and elimination method

Explanation

By, Substitution Method

By. euq(1)

==> x = (10-2y)/ 3 ----------------Equ(3)

Keep value of x in equ(2)

==> (10-2y)/3 - y = 1

==> (10-2y)-3y = 3

==> -5y = 3 - 10

==> y = 7/5

Keep Value in equ(1)

==> 3x + 2 * 7/5 = 10

==> 3x = 10 - 14/5

==> 3x = (10*5-14)/5

==> 3x = (50-14)/5

==> 3x = 36/5

==>x = 36/(3*5)

==> x = 12/5

Hence

  • Value of x = 12/5
  • Value of y = 7/5

__________________

By, Elimination Method

Equation :-

  • 3x + 2y = 10 ----------Equ(4)
  • 2x - 2y = 2------------Equ(5)

_________________Add it's(Eliminate x)

==> 3x + 2x = 10 +2

==> 5x = 12

==> x = 12/5

Keep value of y in equ(4)

==> 3* 12/5 + 2y = 10

==> 2y = 10 - 36/5

==> 2y = (10*5 - 36)/5

==> 2y = (50-36)/5

==> 2y = 14/5

==> y = 14/(2*5)

==> y = 7/5

Hence

  • Value of x = 12/5
  • Value of y = 7/5

__________________

Similar questions