solve the following pair of linear equations by suitable method. 3x-y=3 and 5x-2y=4
Answers
Answer:
Answer:-
\red{\bigstar}★ The values are
\large\leadsto\boxed{\tt\purple{x = 2}}⇝
x=2
\large\leadsto\boxed{\tt\purple{y = 3}}⇝
y=3
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
• Given:-
\sf 3x - y = 3 \dashrightarrow\bf\red{[eqn.i]}3x−y=3⇢[eqn.i]
\sf 5x - 2y = 4 \dashrightarrow\bf\red{[eqn.ii]}5x−2y=4⇢[eqn.ii]
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
• Solution:-
Firstly,
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
• Multiplying eqn.[i] by 2:-
➪ \sf 3x - y = 33x−y=3
➪ \sf (3x - y = 3) \times 2(3x−y=3)×2
➪ \sf 6x - 2y = 6 \dashrightarrow\bf\red{[eqn.iii]}6x−2y=6⇢[eqn.iii]
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
• Subtracting eqn.[ii] from [iii]:-
➪ \sf (6x - 2y) - (5x - 2y) = 6 - 4(6x−2y)−(5x−2y)=6−4
➪ \sf 6x - 2y - 5x + 2y = 26x−2y−5x+2y=2
➪ \sf 6x - 5x = 26x−5x=2
★ \large{\bf\pink{x = 2}}x=2
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
• Substituting value of x in eqn.[i]:-
➪ \sf 3x - y = 33x−y=3
➪ \sf 3 \times 2 - y = 33×2−y=3
➪ \sf 6 - y = 36−y=3
➪ \sf y = 6 - 3y=6−3
★ \large{\bf\pink{y = 3}}y=3
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Therefore, the values are
x = 2
y = 3