Math, asked by kalelakshay0gmailcom, 10 months ago

solve the following pair of linear equations by the substitution and cross-multiplication method. 8x+5y=9. 3x+2y=4​

Answers

Answered by Anonymous
18

{\fbox{\boxed {\huge{\mathbb{\red{ANSWER:-}}}}}}

{\underline{\underline{\green{\rm{By  \: Substituting \:  Method : }}}}}

 \rm  \blue{8x+5y= 9}

 \rm \blue{3x + 2y = 4}

8x+5y = 9. equation ......(1)

3x + 2y= 4. equation .....(2)

From equation(1)

  \rm8x + 5y = 9 \\ \rm8x = 9 - 5y \\ \rm x =   {\frac{9 - 5y}{8}}

Putting the value of x in equation(2)

 \rm3x + 2y= 4. \\  \implies{\rm 3 (\frac{9 - 5y}{8}  + 2y ) = 4} \\ \implies{\rm(\frac{3(9 - 5y)}{8}  + 2y ) = 4} \\   \implies{\rm\frac{3(9 - 5y) + 8(2y)}{8}  = 4}  \\ \implies{\rm3(9 - 5y) + 8(2y) = 4  \times 8} \\  }\implies{\rm27 - 15y + 16y = 32} \\  \implies{\rm27 + y = 32 \\  \rm y = 27 - 32}  \\   \boxed {\implies{\rm \: y = 5}}

Putting y in equation (2)

 \rm3x +2y =4 \\ </p><p>\implies{ \rm3x +2(5)=4} \\ </p><p>\implies{\rm3x+10=4} \\ </p><p>\implies{\rm 3x=4-10} \\ </p><p>\implies{\rm3x=-6}\\ \implies{\rm \: x =  \frac{ - 6}{3}} \\   \boxed{\implies {\rm \: x =  - 2}}

Therefore x = -2 and y = 5

is the solution of given linear pair of equations

______________________

{\underline{\underline{\green{\rm{By \:  Cross \:  Multiplication \:  Method  : }}}}}

{\orange{\rm8x + 5y = 9}} \\ \orange{ \rm3x + 2y = 4}

From cross multiplication

8x + 5y - 9=0

3x + 2y - 4=0

\bold{\rm{For (x)}}

\implies \rm\frac{x}{5x( - 4) - 2x( - 9)} \\  \rm \implies \frac{x}{ - 20 + 18}  \\  \rm \implies{\boxed{\frac{ x}{ - 2}}}

 \bold{\rm{For( Y)}}

\implies \rm\frac{y}{ (- 9)  \times 3(- 4) \times 8} \\  \rm \implies \frac{y}{ - 27 + 32}  \\  \rm \implies{\boxed{\frac{ y}{ 5}}}

\bold{\rm{For(1)}}

\implies \rm\frac{1}{ 8  \times 2(- 3) \times 5} \\  \rm \implies \frac{1}{ - 16 - 15}  \\  \rm \implies{\boxed{\frac{ 1}{ 1}}}

Now,

\rm \frac{x}{ - 2}  =   \frac{1}{1}  \\  \rm \implies{x =  - 2 \times 1 }\\   \rm \implies{x =  - 2}</p><p>

</p><p> \rm \frac{y}{ 5}  =   \frac{1}{1}  \\  \rm \implies{y =  5\times 1 }\\   \rm \implies{ y=   5}

Hence, x = -2 and y = 5 is the solution.

{\boxed{\huge{\green{\mathcal{BeBrainly}}}}}</p><p>

Answered by stbranham2007
2

The above given answer correct refer that..

Attachments:
Similar questions