Math, asked by niyatisalot304, 6 months ago

Solve the following pair of linear equations by the elimination method :
0.5x+2y/3=1 and X-y/3=0​

Answers

Answered by Anonymous
103

Given:

  • 0.5x + 2y/3 = 1
  • x - y/3 = 0

Find:

  • Solve the given pair of Linear Equation

Solution:

we, have

 \to \sf 0.5x +  \dfrac{2y}{3} = (1).......1

 \to \sf x  -   \dfrac{y}{3}  = 0........(2)

Multiplyimg Eq 2 by 0.5 and Eq 1 by 1

 \to \sf 0.5x +  \dfrac{2y}{3}  = 1... \times 1

 \to \sf x  -   \dfrac{y}{3}  = 0..... \times 0.5

we, got

 \to \sf 0.5x +  \dfrac{2y}{3} = 1.........(3)

 \to \sf 0.5x  -   \dfrac{0.5y}{3}  = 0..........(4)

Substract eq 4 from 3

\sf 0.5x +  \dfrac{2y}{3}  = 1 \\  \underline{\sf  - \boxed{ + } 0.5x    + \boxed{-}   \dfrac{0.5y}{3}  = 0} \\  \sf \dfrac{2y}{3}  +  \dfrac{0.5y}{3}  = 1 \\ \sf  \dfrac{2y + 0.5y}{3}  = 1 \\  \sf  2.5y = 3 \\  \sf y =  \dfrac{3}{2.5}  = 1.2

Substitute value of y in eq(1) we, get

 \to \sf 0.5x +  \dfrac{2y}{3}  = 1

 \to \sf 0.5x +  \dfrac{2(1.2)}{3}  = 1

 \to \sf 0.5x +  \dfrac{2.4}{3}  = 1

 \to \sf 0.5x  = 1 -   \dfrac{2.4}{3}

 \to \sf 0.5x  =  \dfrac{3 - 2.4}{3}

 \to \sf 0.5x  =  \dfrac{0.6}{3}

 \to \sf 0.5x  = 0.2

 \to \sf x  =  \dfrac{0.2}{0.5}

 \to \sf x  = 0.4

Hence, x = 0.4 and y = 1.2

Similar questions