Math, asked by XxBlueEyexX, 2 months ago

solve the following pair of linear equations by the substitution method.
\sqrt{2 \: } x \:  +  \:  \sqrt{3}  \: y \:  =  \: 0
 \sqrt{3} x \:  -  \:  \sqrt{8} y \:  =  \: 0

Answers

Answered by XxYadavAshutoshxX
71

\large \green { \fcolorbox{purple}{WHITE}{ \: \textsf{\ \ \ \ddag \ \ \ \ \ \red{QUESTION}\ \ \ \ \ \ddag \ \ \ }}}

☞Solve the following pair of linear equations by the substitution method.

\sqrt{2 \: } x \: + \: \sqrt{3} \: y \: = \: 0

 \sqrt{3} x \: - \: \sqrt{8} y \: = \: 0.

____________________________________

\large \green { \fcolorbox{purple}{WHITE}{ \: \textsf{\ \ \ \ddag \ \ \ \ \ \purple{SOLUTION}\ \ \ \ \ \ddag \ \ \ }}}

\sqrt{2 \: } x \: + \: \sqrt{3} \: y \: = \: 0___(1)

and, \sqrt{3} x \: - \: \sqrt{8} y \: = \: 0___(2)

⟼From equation (1), we obtain

 ⇒x= \frac{-\sqrt{3y}}{\sqrt{2}}

⟼Substituting this value in equation (2), we obtain

 ⇒\sqrt{3}(-\frac{\sqrt{3y}}{\sqrt{2}})-\sqrt{8y}=0

⇒\frac{\sqrt{3y}}{\sqrt{2}}- 2\sqrt{2y}=0

⇒y(-\frac{3}{\sqrt{2}}-2\sqrt{2})=0

⇒y=0

⟼Substituting this value in equation (3), we obtain x=0

⟹Therefore,  x=0\: and\: y=0

_________________________________

Hope it helps you ☺️!

Answered by garimasingh143
7

Step-by-step explanation:

Answer is in the attachment. Rude words are coming so

Attachments:
Similar questions