solve the following pair of linear equations for x and y:
please solve it with steps
Attachments:

Answers
Answered by
2
Given : x/a + y/b = a + b
On cross-multiplication, we get
bx + ay = a^2b + b^2a ------------------- (1)
Given: x/a^2 + y/b^2 = 2
On cross-multiplication, we get
b^2x + a^2y = 2a^2b^2 --------------------- (2)
On solving (1) * b & (2), we get
b^2x + aby = a^2b^2 + b^3a ------------ (3)
b^2x + a^2y = 2a^2b^2 ------------------- (4)
---------------------------------------------
aby - a^2y = -a^2b^2 + b^3a
ay(b - a) = ab^2(-a + b)
ay = ab^2
y = b^2.
Substitute y = b^2 in (4), we get
b^2x + a^2y = 2a^2b^2
b^2x + a^2b^2 = 2a^2b^2
b^2(x + a^2) = 2a^2b^2
x + a^2 = 2a^2
x = 2a^2 - a^2
x = a^2
Hope this helps!
On cross-multiplication, we get
bx + ay = a^2b + b^2a ------------------- (1)
Given: x/a^2 + y/b^2 = 2
On cross-multiplication, we get
b^2x + a^2y = 2a^2b^2 --------------------- (2)
On solving (1) * b & (2), we get
b^2x + aby = a^2b^2 + b^3a ------------ (3)
b^2x + a^2y = 2a^2b^2 ------------------- (4)
---------------------------------------------
aby - a^2y = -a^2b^2 + b^3a
ay(b - a) = ab^2(-a + b)
ay = ab^2
y = b^2.
Substitute y = b^2 in (4), we get
b^2x + a^2y = 2a^2b^2
b^2x + a^2b^2 = 2a^2b^2
b^2(x + a^2) = 2a^2b^2
x + a^2 = 2a^2
x = 2a^2 - a^2
x = a^2
Hope this helps!
Answered by
2
Hi,
Please see the attached file!
Thanks
Please see the attached file!
Thanks
Attachments:

mysticd:
plz , take care doing subtration of equations ,
Similar questions