Solve the following pair of linear equations for x and y : 141x+93y=189 ; 93x+141y=45
Answers
Answered by
29
141x+93y=189...eq1
93x+141y=45...eq2
multiply eq1 by 93 and eq2 by 141
93(141x+93y=189)
141(93x+141y=45)
13113x+8649y=17577
13113x+19881y=6345
by sbstrating these eqn
-11232y=11232
y= - 1
put value of y in eq1
141x+93y=189
141x+93*(-1)=189
141x-93=189
141x=189+93
141x=282
x=2
Answered by
22
Given:
141x + 93y = 189
93x + 141y = 45
To Find:
value of x and y
Solution:
we have,
141x+93y=189 -------------------(i)
93x+141y=45 --------------------(ii)
multiply eq(i) by 93 and eq(ii) by 141
⇒ 93(141x+93y=189)
⇒ 141(93x+141y=45)
⇒ 13113x+8649y=17577
⇒ 13113x+19881y=6345
subtracting the equations
we get,
⇒ -11232y = 11232
⇒ y = -1
putting the value of y = -1 in equation (i)
⇒ 141x+93y=189
⇒ 141x+93*(-1)=189
⇒ 141x-93=189
⇒ 141x=189+93
⇒ 141x=282
⇒ x=2
So, x = 2 and y = -1.
Similar questions