Math, asked by dimplerpriya, 1 year ago


Solve the following pair of linear equations for x and y : 141x+93y=189 ; 93x+141y=45

Answers

Answered by eshwaradhitya
29

141x+93y=189...eq1

93x+141y=45...eq2

multiply eq1 by 93 and eq2 by 141

93(141x+93y=189)

141(93x+141y=45)

13113x+8649y=17577

13113x+19881y=6345

by sbstrating these eqn

-11232y=11232

y= - 1

put value of y in eq1

141x+93y=189 

141x+93*(-1)=189

141x-93=189

141x=189+93

141x=282

x=2

Answered by qwnerazzuri
22

Given:

141x + 93y = 189

93x + 141y = 45

To Find:

value of x and y

Solution:

we have,

141x+93y=189  -------------------(i)

93x+141y=45  --------------------(ii)

multiply eq(i) by 93 and eq(ii) by 141

⇒ 93(141x+93y=189)

⇒ 141(93x+141y=45)

⇒ 13113x+8649y=17577

⇒ 13113x+19881y=6345

subtracting the equations

we get,

⇒ -11232y = 11232

⇒ y = -1

putting the value of y = -1  in equation (i)

⇒ 141x+93y=189

⇒ 141x+93*(-1)=189

⇒ 141x-93=189

⇒ 141x=189+93

⇒ 141x=282

⇒ x=2

So, x = 2 and y = -1.

Similar questions