Math, asked by queenmemon982, 4 months ago

solve the following pair of linear equations using quadratic formula 1/x+4-1/x-7=11/30,x=-4,7​

Answers

Answered by Anonymous
2

GIVEN :-

 \\  \sf \:  \dfrac{1}{x + 4}  -  \dfrac{1}{x - 7}  =  \dfrac{11}{30}  \\  \\

TO FIND :-

  • Roots of the polynomial.

 \\

SOLUTION :-

We have ,

 \\  \implies\sf \:  \dfrac{1}{x + 4}  -  \dfrac{1}{x - 7}  =  \dfrac{11}{30} \\  \\  \implies\sf \:  \dfrac{x - 7 - (x + 4)}{(x + 4)(x - 7)}   =  \dfrac{11}{30}  \\  \\  \implies\sf \:  \dfrac{ \cancel x - 7 -  \cancel x - 4}{x(x - 7) + 4(x - 7)}  =  \dfrac{11}{30}  \\  \\  \implies\sf \:  \dfrac{ - 11}{ {x}^{2}  - 7x + 4x - 28}  =  \dfrac{11}{30}  \\  \\  \implies\sf \:  \dfrac{ - 11}{ {x}^{2} - 3x - 28 }  =  \dfrac{11}{30}  \\

 \\ \implies\sf \:  - 11(30) = 11( {x}^{2}  - 3x - 28) \\  \\  \implies\sf \:  {x}^{2}  - 3x - 28 =  \dfrac{ -  \cancel{11}(30)}{ \cancel{11}}  \\  \\  \implies\sf \:  {x}^{2}  - 3x - 28 =  - 30 \\  \\  \implies\sf \:  {x}^{2}  - 3x - 28 + 30 = 0 \\  \\  \implies\underline{ \sf \:  {x}^{2}  - 3x + 2 = 0} \\  \\

Now , the equation is in the form of ax² + bx + c.

Here ,

  • a = 1
  • b = -3
  • c = 2

QUADRATIC FORMULA :-

 \\   \clubsuit \boxed{\sf \: roots =  \dfrac{ - b ±\sqrt{ {b}^{2} - 4ac } }{2a} } \\   \\

Putting values,

 \\ \longmapsto\sf \: roots =  \dfrac{ - ( - 3) ± \sqrt{ {( - 3)}^{2} - 4(1)(2) } }{2(1)}  \\  \\  \longmapsto\sf \: roots =  \dfrac{3± \sqrt{9 - 8} }{2}  \\  \\  \longmapsto\sf \: roots =  \dfrac{3± \sqrt{1} }{2}  \\

 \longmapsto\sf \: roots =  \dfrac{3 + 1}{2}  \: , \:  \dfrac{3 - 1}{2}  \\  \\  \longmapsto\sf \: roots = \dfrac{4}{2}  \: , \:  \dfrac{2}{2}  \\  \\    \longmapsto\underbrace{\boxed{\sf \: roots = 2 \: , \: 1}} \\  \\

Hence , roots are 2,1.

Similar questions