Math, asked by AzmanMS, 9 months ago

Solve the following pair of liner equation by the substitution method.
 \frac{3x}{2 }  -  \frac{5y}{3}  =  - 2  \\  \\  \frac{x}{3}  +  \frac{y}{2}  =  \frac{13}{6}
Please give the answer fast its very urgent​

Answers

Answered by Anonymous
139

AnswEr :

\underline{\bigstar\:\textsf{According to the Question :}}

\displaystyle:\implies\sf\frac{x}{3} + \frac{y}{2} = \frac{13}{6}\\\\\\\displaystyle:\implies\sf\frac{2x + 3y}{6} = \frac{13}{6}\\\\\\\displaystyle:\implies\sf2x + 3y = 13\\\\\\\displaystyle:\implies\sf2x = 13 - 3y\\\\\\\displaystyle:\implies\sf x = \frac{13 - 3y}{2}

\rule{200}{1}

\underline{\bigstar\:\textsf{Putting the value of x in another equation :}}

\displaystyle:\implies\sf \frac{3x}{2 } - \frac{5y}{3} = - 2\\\\\\\displaystyle:\implies\sf \frac{3(13 - 3y)}{2 \times 2} - \frac{5y}{3} =  - 2\\\\\\\displaystyle:\implies\sf \frac{39 - 9y}{4} - \frac{5y}{3} =  - 2\\\\\\\displaystyle:\implies\sf \frac{3(39 - 9y) - 4(5y)}{12} =  - 2\\\\\\\displaystyle:\implies\sf 117 - 27y - 20y =  - 2 \times 12\\\\\\\displaystyle:\implies\sf117 - 47y =  - 24\\\\\\\displaystyle:\implies\sf - 47y =  - 24 - 117\\\\\\\displaystyle:\implies\sf - 47y = - 141\\\\\\\displaystyle:\implies\sf y =  \frac{ - 141}{ - 47}\\\\\\\displaystyle:\implies\boxed{\pink{\sf y = 3}}

\rule{150}{2}

\underline{\bigstar\:\textsf{Value of x :}}

\displaystyle:\implies\sf x = \frac{13 -3y}{2}\\\\\\\displaystyle:\implies\sf x = \frac{13 - 3(3)}{2}\\\\\\\displaystyle:\implies\sf x = \frac{13 - 9}{2}\\\\\\\displaystyle:\implies\sf x = \frac{4}{2}\\\\\\\displaystyle:\implies\boxed{\pink{\sf x = 2}}

\therefore\:\underline{\textsf{Value of x and y is \textbf{2 and 3 respectively.}}}

Answered by Anonymous
46

\bf{\Huge{\boxed{\tt{\purple{ANSWER\::}}}}}

\bf{\Large{\underline{\bf{Given\::}}}}

\sf{\dfrac{3x}{2} \:-\:\dfrac{5y}{3} \:=\:-2\:\:\:\:\:\:\:\:\&\:\:\:\:\:\:\:\dfrac{x}{3} +\dfrac{y}{2}=\dfrac{13}{6}  }

\bf{\Large{\underline{\bf{To\:find\::}}}}

The substitution Method.

\bf{\Large{\underline{\tt{\red{Explanation\::}}}}}

We have,

\sf{\dfrac{3x}{2} \:-\:\dfrac{5y}{3} \:=\:-2.........................(1)}\\\\\\\sf{\dfrac{x}{3} \:+\:\dfrac{y}{2} \:=\:\dfrac{13}{6}.............................(2) }

From Equation (1), we get;

\mapsto\:\sf{\dfrac{3x}{2} -\dfrac{5y}{3}=-2}\\\\\\\mapsto\:\sf{\dfrac{9x-10y}{6} =-2}\\\\\\\mapsto\:\sf{9x-10y=-12}\\\\\\\mapsto\:\sf{9x=-12+10y}\\\\\\\mapsto\:\sf{\red{x\:=\:\dfrac{-12+10y}{9}..................(3) }}

Putting the value of x in equation (2), we get;

\mapsto\:\sf{\dfrac{\dfrac{-12+10y}{9} }{3}\: +\:\dfrac{y}{2} =\dfrac{13}{6} }

\mapsto\:\sf{\dfrac{-12+10y}{27} +\dfrac{y}{2} =\dfrac{13}{6} }

\mapsto\:\sf{\dfrac{-24+20y+27y}{54} =\dfrac{13}{6} }

\mapsto\:\sf{\dfrac{-24+47y}{54} =\dfrac{13}{6} }

\bf{\Large{\boxed{\sf{\orange{\bigstar{Cross\:-\:Multiplication\::}}}}}}}

\mapsto\:\sf{6(-24+47y)\:=\:(13*54)}

\mapsto\:\sf{-144+282y\:=\:702}

\mapsto\:\sf{282y\:=\:702\:+\:144}

\mapsto\:\sf{282y\:=\:846}

\mapsto\:\sf{y\:=\:\cancel{\dfrac{846}{282} }}

\mapsto\:\sf{\red{y\:=\:3}}

Putting the value of y in equation (3), we get;

\longmapsto\sf{x\:=\:\dfrac{-12+10(3)}{9} }\\\\\\\longmapsto\sf{x\:=\:\dfrac{-12+30}{9} }\\\\\\\\\longmapsto\sf{x\:=\:\cancel{\dfrac{18}{9} }}\\\\\\\\\longmapsto\sf{\red{x\:=\:2}}

Thus,

The value is x = 2 & y = 3.

Similar questions