Math, asked by thandava49, 4 months ago


Solve the following pairs of equations
by reducing them to a pair of linear
equation
1/x +1/y=4
2/x-4/y=8​

Answers

Answered by Aryan0123
17

\tt{Let \: \dfrac{1}{x} \: be \: u \: and \: \dfrac{1}{y} \: be \:v}\\\\\\\\\bf \underline{According \: to \: the \: question,}\\\\\sf{u + v = 4 \quad \: \: \: \dashrightarrow [Equation\:1] }\\\\\sf{2u - 4v=8 \quad \dashrightarrow [Equation\:2]}\\\\\\\rm{Taking\:2\:as\:a\:common\:factor\:in\:Equation\:2}\\\\\sf{2(u-2v)=8}\\\\\\\implies \sf{u - 2v=\dfrac{8}{2}}\\\\\\\implies \sf{u-2v=4  \:\:\: \quad \dashrightarrow [Equation \: 3]}\\\\\\\sf{(Equation\:1)-(Equation\:3)}\\\\

                  u + v = 4

         {-}    u - 2v = 4  

                      3v = 0

v = 0

Substitute value of v in Equation 1 to find the value of u

u + v = 4

⇒ u + 0 = 4

u = 4

v = 1 ÷ y

⇒ y = 1 ÷ 0

Value of y is not defined.

u = 1 ÷ x

⇒ x = 1÷4

 \implies \sf{x=\dfrac{1}{4}}

Therefore, there is no solution for y and value of x is ¼


Uriyella: Nice! :)
prince5132: Great !!
Answered by Mister360
39

Solution:-

Given Equations :-

\sf {\dfrac {1}{x}}+\dfrac {1}{y}=4\dots\dots (1)

\sf \dfrac {2}{x}+\dfrac {4}{y}=8 \dots\dots (2)

  • Let

\qquad\quad {:}\longmapsto\sf \dfrac {1}{x}=u

\qquad\quad {:}\longmapsto\sf \dfrac {1}{y}=v

  • Now the new equations

\qquad\quad {:}\longmapsto\sf u+v=4\dots\dots (3)

\qquad\quad {:}\longmapsto\sf 2u-4v=8

  • Make it simplified

\qquad\quad {:}\longmapsto\sf \cancel {2} (u-2v)=\cancel {2} (4)

\qquad\quad {:}\longmapsto\sf u-2v=4\dots\dots (4)

  • There are now Four ways by which we can solve

___________________________

\qquad\quad {:}\longmapsto\sf Substitution\:method

\qquad\quad {:}\longmapsto\sf Elimination \:method

\qquad\quad {:}\longmapsto\sf Cross\:multiplication\:method

\qquad\quad {:}\longmapsto\sf Cramer 's\: rule

___________________________

  • Let's use Elimination method

  • By multiplying eq (3) by 2 and eq (4) by 1 we get

\qquad\quad {:}\longmapsto\sf 2u+2v=8\dots\dots(5)

\qquad\quad {:}\longmapsto\sf u-2v=4\dots\dots (6)

  • Substract eq(6) from eq (5)
  • we get

\qquad\quad {:}\longmapsto{\underline{\boxed{\sf u=4 }}}

  • Substitute the value in eq (3)

\qquad\quad {:}\longmapsto\sf u+v=4

\qquad\quad {:}\longmapsto\sf 4+v=4

\qquad\quad {:}\longmapsto\sf v=4-4

\qquad\quad {:}\longmapsto{\underline{\boxed{\sf v=0}}}

____________________________

\qquad\quad {:}\longmapsto\sf u={\dfrac {1}{x}} \\ \implies \sf \dfrac {1}{x}=4 \\ \implies x={\dfrac {1}{4}}

\qquad\quad {:}\longmapsto\sf v={\dfrac {1}{y}} \\ \implies\sf {\dfrac {1}{y}}=0 \\ \implies y=0

\therefore{\underline{\boxed{\sf (x,y)=({\dfrac {1}{4}}, 0)}}}

\Large\underbrace {Confused!!Let's\: verify}

  • We have to put the values of x and y in the equation instead of x and y . If the answer comes zero then our solution is correct.
  • substitute the values in eq (1)

\qquad\quad{:}\longrightarrow\sf \dfrac {1}{x}+{\dfrac {1}{y}}=4

\qquad\quad{:}\longrightarrow\sf \dfrac {1}{\dfrac {1}{4}}+{\dfrac {1}{0}}=4

\qquad\quad{:}\longrightarrow\sf 4+0=4

\qquad\quad{:}\longrightarrow\sf 4-4=0

\qquad\quad{:}\longrightarrow\sf 0=0

\therefore\underline{\sf Hence\:Verified}


Anonymous: Awesome!
Uriyella: Nice!
prince5132: Superb !!
Similar questions