Math, asked by tanishka12335, 2 months ago

Solve the following pairs of equations by reducing them to a pair of linear equations by elimination method ​

Attachments:

Answers

Answered by ThePhenonal
44

\sf 6x+3y=6xy ...(1)

\sf 2x+4y=5xy ...(2)

Dividing equation 1 and 2 by xy we get,

\sf \frac{6x}{xy}+\frac{3y}{6xy}=\frac{6xy}{xy}

\sf \frac{6}{y}+\frac{3}{x}=6  ...(3)

\sf \frac{2x}{xy}+\frac{4y}{6xy}=\frac{5xy}{xy}

\sf \frac{2}{y}+{4}{x}=5 ...(4)

Let us assume \frac{1}{x}=p \:\: and \:\: \frac{1}{y}=q

\sf 6q+3p=6 ...(5)

\sf 2q+4p=5 ...(6)

Multiple equation 6 by 3 we get,

\sf 3(2q+4p=5)=6q+12p=15 ...(7)

Subtracting equation 5 from equation 7 we get,

6q+12p=15

- 6q+3p=6

(-) (-) (-)

___________

9p=9

___________

\sf 9p=9

\sf\red{ p=1 }

Substituting value of p in equation 5 we get,

\sf 6q+3(1)=6

\sf 6q+3=6

\sf 6q=3

\sf q=\frac{3}{6}

\sf\red {q=\frac{1}{2} }

\sf p=\frac{1}{x}

Value of p is 1 So,

\sf 1=\frac{1}{x}

\sf\red{ x=1 }

\sf \frac{1}{y}=q

Value of q is \frac{1}{y}=2

\sf \frac{1}{y}=\frac{1}{2}

\sf\red{ y=2 }

Similar questions