Math, asked by bajajpriyanka, 1 month ago

solve the following pairs of equations by reducing them to a pair of linear equations.. by elimination method​

Attachments:

Answers

Answered by XxMrZombiexX
94

Question :

 \longmapsto \:   \bf{\dfrac{4}{x}  + 3y = 14 \: },  \\   \\ \longmapsto \bf{  \:  \:  \dfrac{3}{x} - 4y = 23}

Answer:

  • x = 1/5 , y = -2

Step-by-step explanation:

Given information

  • 4/x + 3y = 14 & 3/x - 4y = 23

Need to find out

  • solve the following pairs of equations by reducing them to a pair of linear equations.. by elimination method

Solution

Let 1/x be k

 \rightarrow \frac{4}{x}  + 3y = 14 -  -  - (1) \\  \rightarrow \frac{3}{x}  - 4y = 23 -  -  - (2)

So , our equations became

  • 4k + 3y = 14 ----(3)
  • 3k - 4y = 23 ---(4)

Now , solving equation (3)

⇒ 4k + 3y = 14

⇒ 4k = 14 - 3y

⇒ k = 14 - 3y/4

Putting value of k in equations (4) we get

 \\  \tt \: ⇒3k - 4y = 23 \\

 \\ ⇒ \tt3 \bigg( \frac{14 - 3y}{4}  \bigg) - 4y = 23 \\

Multiplying both side by 4 we get

 \\  \tt ⇒3 \times 4 \bigg( \frac{14 - 3y}{4}  \bigg) - 4 \times 4y = 23 \times 4 \\

 \\  \tt⇒ \cancel{12} \times  \dfrac{14 - 3y}{ \cancel4}  - 16y = 92 \\

 \\  \tt⇒3 \times  (14 - 3y) - 16y = 92 \\

 \\  \tt⇒4 - 9y - 16y = 92 \\

 \\  \tt⇒ - 9 - 16y = 92 - 42 \\

  \\  \tt⇒  - 25y = 50\\

  \\  \tt ⇒y = \cancel  \frac{  50}{ - 25} \\

 \\   \large\pink{ \tt⇒y =  - 2 }\\

Now ,Putting value of yn= -2 in equations (3) we get

 \\  \tt⇒4k + 3y = 14 \\

\\  \tt⇒4k + 3( - 2) = 14 \\

\\  \tt⇒4k - 6 = 14

\\  \tt⇒4k = 14 + 6 \\

\\  \tt⇒4k = 20 \\

\\  \tt⇒ k =  \cancel \frac{20}{4} \\

\\  { \text⇒k = 5\ \:  \:  \: b ut \:  \:  \red{k =  \frac{1}{x}  } \:} \\   \\  \\   \bf \: therefour \:  \:  \\ \\  \longmapsto \large \pink{x=  \frac{1}{5} }

 \\  \text{ Hence } \bf{\red{x = \dfrac{1}{5} , y = -2}}\text{ is the Solution of the given equation}\\

Similar questions