Math, asked by mgdlekka, 5 months ago


Solve the following pairs of linear equation by substitution method:3x -y-3=0
x-3y-9=0

Answers

Answered by Anonymous
5

Solution:-

:- We have

=> 3x - y - 3 = 0 .......(i) eq

=> x - 3y - 9 = 0 ........(ii)eq

Now Take (ii)eq

=> x - 3y - 9 = 0

=> x = 3y + 9 .......(iii)eq

Now substitute (iii)eq in (i)eq

=> 3( 3y + 9 ) - y - 3 = 0

=> 9y + 27 - y - 3 = 0

=> 8y + 24 = 0

=> 8y = -24

=> y = - 3

Now substitute value of y (iii)eq

=> x = 3y + 9

=> x = 3 × - 3 + 9

=> x = -9 + 9

=> x = 0

Value of x = 0 and y = - 3

Answered by DevyaniKhushi
1

Here,

 \rm3x - y  -  3 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \cdots(i) \\  \rm{x - 3y - 9 = 0\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \cdots(ii)}

Or,

 \rm3x - y = 3\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \cdots(iii) \\  \rm{x - 3y  =  9}\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \cdots(iv)

From Equation (iii),

 \rm{y =3x - 3 }\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \cdots(A)

Putting Equation A in Equation (iv), we get,

 \rm{}x - 3(3x - 3) = 9 \\  \rm{}x - 9x + \cancel 9 = \cancel9 \\ \rm  - 8x = 0 \\   \\ \rm \frac{ - 8x}{ - 8}  =  \frac{0}{ - 8}  \\  \\   \huge \rm x = \pink 0

Now, Putting the value of x in Equation A

 \huge \rm{}y = 3x - 3 \\  \\ \huge \rm{}y = 3(0) - 3 \\ \huge \rm{}y = 0 - 3  \\  \huge \rm{}y =  \pink{ - 3}

Thus,

  • Value of x = 0
  • Value of y = -3
Similar questions