Math, asked by Anonymous, 4 months ago

Solve the following pairs of linear (simultaneous) equations using method of elimination by substitution:
1.5x+0. 1y=6.2
3x - 0.4y = 11.2 ​

Answers

Answered by DüllStâr
60

    \large{ \pink{ \boxed{ \blue{ \sf{Question:  }}}}}

Solve the following pairs of linear (simultaneous) equations using method of elimination by substitution:

  • 1.5x+0. 1y=6.2
  • 3x - 0.4y = 11.2

    \large{ \pink{ \boxed{ \blue{ \sf{To \:  Find:  }}}}}

Value of x and y using method of elimination by substitution.

    \large{ \pink{ \boxed{ \blue{ \sf{Answer:  }}}}}

Equation 1:

 \text{1.5x+0. 1y=6.2}

:\implies\sf{ \dfrac{15 \: x}{10} +  \dfrac{y}{10} =    \dfrac{62}{10} }

Multiply each digit by 10

 :\implies\sf{15x + y = 62}

:\implies\sf{ y = 62 - 15x...........(1)}

Equation 2:

 \sf{3x - 0.4y = 11.2 }

 :   \implies\sf{3x -  \dfrac{4y}{10}  =  \dfrac{112}{10} }

Multiply each digit by 10

  \sf{ :  \implies30x - 4 y= 112.............(2)}

Now put value of y in Equation 2

 \sf{30x - 4(62 - 15x) = 112}

 :   \implies\sf{30x -248 + 60x = 112 }

 :  \implies \sf{90x = 112 + 248}

 :  \implies \:  \sf{90x = 360}

 :  \implies \:  \sf{x =  \dfrac{36 \cancel0}{9 \cancel0} }

 :  \implies \:   \pink{\boxed{\sf{x = 4}}}

Now put the value of x ie 4 in Equation 1:

\sf{ y = 62 - 15x}

 :  \implies \sf{y = 62 - 15(4)}

 :  \implies \:  \sf{y =62 - 60 }

 :  \implies \:  \pink{  \boxed{\sf{y =   2}}}

Verification:

\sf{ 3x - 0.4y = 11.2}

\sf{:  \implies 3(4)-0.4(2)=11.2}

\sf{ :  \implies12-0.8=11.2}

:\implies \pink{\boxed{\sf{  ☆11.2=11.2☆}}}

Cheers!

Similar questions