Solve the following problem after finding its dual.
Min z = x1 - 3x2 + 3x3
s.t.
3x1 - x2 + 2 x3 ≤ 7
2x1 + 4x2 ≥ -12
-4x1 + 3x2 + 8x3 ≤ 10
x1, x2, x3 ≥ 0
Answers
Answered by
0
Step-by-step explanation:
3x1 - x2 + 2 x3 ≤ 7
2x1 + 4x2 ≥ -12
-4x1 + 3x2 + 8x3 ≤ 10
x1, x2, x3 ≥ 0 3x1 - x2 + 2 x3 ≤ 7
2x1 + 4x2 ≥ -12
-4x1 + 3x2 + 8x3 ≤ 10
x1, x2, x3 ≥ 0 3x1 - x2 + 2 x3 ≤ 7
2x1 + 4x2 ≥ -12
-4x1 + 3x2 + 8x3 ≤ 10 3x1 - x2 + 2 x3 ≤ 7
2x1 + 4x2 ≥ -12
-4x1 + 3x2 + 8x3 ≤ 10 3x1 - x2 + 2 x3 ≤ 7
2x1 + 4x2 ≥ -12
-4x1 + 3x2 + 8x3 ≤ 10
x1, x2, x3 ≥ 0
x1, x2, x3 ≥ 0
x1, x2, x3 ≥ 0 3x1 - x2 + 2 x3 ≤ 7
2x1 + 4x2 ≥ -12
-4x1 + 3x2 + 8x3 ≤ 10
x1, x2, x3 ≥ 0
Similar questions