Math, asked by meeandmiself, 5 months ago

Solve the following problem after finding its dual.

Min z = x1 - 3x2 + 3x3

s.t.
3x1 - x2 + 2 x3 ≤ 7
2x1 + 4x2 ≥ -12
-4x1 + 3x2 + 8x3 ≤ 10
x1, x2, x3 ≥ 0 ​

Answers

Answered by itsnasreensahaikh
0

Step-by-step explanation:

3x1 - x2 + 2 x3 ≤ 7

2x1 + 4x2 ≥ -12

-4x1 + 3x2 + 8x3 ≤ 10

x1, x2, x3 ≥ 0 3x1 - x2 + 2 x3 ≤ 7

2x1 + 4x2 ≥ -12

-4x1 + 3x2 + 8x3 ≤ 10

x1, x2, x3 ≥ 0 3x1 - x2 + 2 x3 ≤ 7

2x1 + 4x2 ≥ -12

-4x1 + 3x2 + 8x3 ≤ 10 3x1 - x2 + 2 x3 ≤ 7

2x1 + 4x2 ≥ -12

-4x1 + 3x2 + 8x3 ≤ 10 3x1 - x2 + 2 x3 ≤ 7

2x1 + 4x2 ≥ -12

-4x1 + 3x2 + 8x3 ≤ 10

x1, x2, x3 ≥ 0

x1, x2, x3 ≥ 0

x1, x2, x3 ≥ 0 3x1 - x2 + 2 x3 ≤ 7

2x1 + 4x2 ≥ -12

-4x1 + 3x2 + 8x3 ≤ 10

x1, x2, x3 ≥ 0

Similar questions