Math, asked by 1Message919978644478, 1 month ago

Solve the following problems. 1) Simplyfy : (5/2)5 ÷ (2/5)3​

Attachments:

Answers

Answered by itzmeSaksham
9

Step-by-step explanation:

refer to the attachment

hope it helps

Attachments:
Answered by Anonymous
8

Step-by-step explanation:

  \rm 0.9 \times 10 = 9

 \rm 0.1 \times 12.6 = 1.26

3.25 \div 10 =  \frac{3.25}{10}  = 0.325

0.9 \div 3 =  \frac{0.9}{3}  = 0.3

12.5 \div 2.5  = \frac{12.5}{2.5}  = 5

 {( \frac{5}{2} })^{5}  \div  {( \frac{2}{5} })^{3}

 \frac{ {5}^{5} }{ {2}^{5} }  \div  \frac{ {2}^{3} }{ {5}^{3} }

 \frac{ {5}^{5} }{ {2}^{5} } \times  \frac{ {5}^{3} }{ {2}^{3} }

 \frac{ {5}^{5 + 3} }{ {2}^{5 + 3} }

 \frac{ {5}^{8} }{ {2}^{8} }

 {( \frac{5}{2} )}^{8}

 \rm  \frac{ {a}^{4} \times  {b}^{5} \times  {c}^{7}   }{ {c}^{8}  \times  {a}^{4}  \times  {b}^{3} }

 \rm   \frac{{a}^{4}  \times  {a}^{ - 4}  \times  {b}^{5}  \times  {b}^{ - 3} }{ {c}^{8} \times  {c}^{7}  }   \: \:   \{ \because \:   \frac{ {x}^{m} }{ {x}^{n} }  = {x}^{m - n} \}

 \rm   \frac{{a}^{4 - 4}  \times  {b}^{5 - 3}}{ {c}^{8 - 7} }    \:  \:  \{ \because \:  {x}^{m}  \times  {x}^{n}  =  {x}^{m + n}  \}

 \rm   \frac{{a}^{0}  \times  {b}^{2}}{ {c} }

 \rm   \frac{1  \times  {b}^{2}}{ {c} }   \:  \:  \{ \because \:  \:  {x}^{0 }  = 1 \}

 \rm   \frac{{b}^{2}}{ {c} }

 \rm 2x = 10

\rm x =  \frac{ \cancel{10}}{\cancel2}

\rm   x = 5

\rm   7m + 5  = 40

\rm   7m  = 40 - 5

\rm   7m  =35

\rm   m  = \frac{ \cancel{35}}{ \cancel7}

\rm   m = 5

\rm   2(x + 3) = 10

\rm   2x + 6 = 10

\rm   2x = 10 - 6

\rm   2x =4

\rm   x = \frac{ \cancel4}{\cancel2}

 \rm x = 2

Similar questions