Math, asked by seemachaudhary89050, 4 months ago

Solve the following problems:
a) Simplify: [@)x2 + ?)y2] x [3x2 – 4y21
2​

Attachments:

Answers

Answered by suraj5070
218

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

 \tt Simplify

 \sf \bf \Bigg[\bigg(\dfrac{3}{2}\bigg){x}^{2}+\bigg(\dfrac{2}{5}\bigg){y}^{2}\Bigg] \times \Bigg[3{x}^{2}-4{y}^{2}\Bigg]

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf\implies \Bigg[\bigg(\dfrac{3}{2}\bigg){x}^{2}+\bigg(\dfrac{2}{5}\bigg){y}^{2}\Bigg] \times \Bigg[3{x}^{2}-4{y}^{2}\Bigg]

 \sf \bf\implies \Bigg[\bigg(\dfrac{3{x}^{2}}{2}\bigg) +\bigg(\dfrac{2{y}^{2}}{5}\bigg)\Bigg] \times \Bigg[3{x}^{2}-4{y}^{2}\Bigg]

 \sf \bf\implies \Bigg[\dfrac{3{x}^{2}}{2} +\dfrac{2{y}^{2}}{5}\Bigg] \times \Bigg[3{x}^{2}-4{y}^{2}\Bigg]

 \sf \bf\implies 3{x}^{2} \times \Bigg[\dfrac{3{x}^{2}}{2} +\dfrac{2{y}^{2}}{5}\Bigg] - 4{y}^{2}\times \Bigg[\dfrac{3{x}^{2}}{2} +\dfrac{2{y}^{2}}{5}\Bigg]

 \sf \bf \implies \dfrac{9{x}^{4}}{2}+\dfrac{6{x}^{2}{y}^{2}}{5}-\dfrac{12{x}^{2}{y}^{2}}{2}-\dfrac{8{y}^{4}}{5}

 \sf \bf \implies \dfrac{9{x}^{4}}{2}+\dfrac{12{x}^{2}{y}^{2}-60{x}^{2}{y}^{2}}{10}-\dfrac{8{y}^{4}}{5}

 \sf \bf \implies \dfrac{9{x}^{4}}{2}+\dfrac{-48{x}^{2}{y}^{2}}{10}-\dfrac{8{y}^{4}}{5}

\implies{\boxed {\color{blue} {\sf \bf \dfrac{9{x}^{4}}{2}-\dfrac{48{x}^{2}{y}^{2}}{10}-\dfrac{8{y}^{4}}{5}}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

_________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 {\underbrace {\overbrace {\tt Identities}}}

 \sf \bf {(a+b)}^{2}={a}^{2}+2ab+{b}^{2}

 \sf \bf {(a-b)}^{2}={a}^{2}-2ab+{b}^{2}

 \sf \bf (a+b) (a-b) ={a}^{2}-{b}^{2}

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Similar questions