Math, asked by kunaljangra53219, 1 year ago

Solve the following quaditic equations for x: x^2+(a/a+b + a+b/a) x+1=0

Answers

Answered by Anonymous
8

Given equation,

 \sf{x {}^{2} + ( \frac{a}{a + b} +  \frac{a + b}{a} )x + 1 = 0  } \\  \\

Now,

The constant term can be written as:

 \sf{1 =  \frac{a}{a + b}. \frac{a + b}{a}  } \\  \\

By splitting the middle term,

 \sf{x {}^{2} +  \frac{a}{a + b}x +  \frac{a + b}{a}x +  \frac{a}{a + b}. \frac{a + b}{a} = 0  } \\  \\  \implies \:  \sf{x(x +  \frac{a}{a + b}) +  \frac{a + b}{a}(x +  \frac{a}{a + b}) = 0   } \\  \\  \implies \:  \sf{(x +  \frac{a + b}{a})(x +  \frac{a}{a + b}) = 0  } \\  \\  \implies \:  \boxed{ \sf{x =   \frac{ - a}{a + b} \:  \: or \:  \:  \frac{   - (a + b)}{a}  }}

The roots of the equation are -a/a+b and -(a+b)/a

Similar questions