Solve the following quadratic equation:a) 1/(a+b+x) = 1/a+1/b+1/x , (a+b ≠0)
Answers
Answered by
4
Given :
1/(a+b+x) = 1/a+1/b+1/x
1/(a+b+x) - 1/x = 1/a+1/b
x - (a+b+x) /x (a+b+x) = a+b / ab
[ Taking LCM x (a+b+x) in LHS & ab in RHS]
x - a- b- x /x (a+b+x) = a+b / ab
-(a+b) / x (a+b+x) = a+b / ab
-(a+b) × ab = x (a+b+x) × (a+b)
-(a+b) × ab - x (a+b+x) × (a+b) = 0
-(a+b){ ab + x (a+b+x) } = 0
[ Taking -(a+b) Common]
ab + x (a+b+x )= 0 [ a+b ≠0]
ab + ax + bx +x² = 0
x² + ax +bx +ab = 0
x(x+a) +b (x+a) = 0
(x+a) (x+b) = 0
(x+a)= 0 or (x+b) = 0
x = -a or x= -b
Hence, x = -a or x= -b.
HOPE THIS WILL HELP YOU...
1/(a+b+x) = 1/a+1/b+1/x
1/(a+b+x) - 1/x = 1/a+1/b
x - (a+b+x) /x (a+b+x) = a+b / ab
[ Taking LCM x (a+b+x) in LHS & ab in RHS]
x - a- b- x /x (a+b+x) = a+b / ab
-(a+b) / x (a+b+x) = a+b / ab
-(a+b) × ab = x (a+b+x) × (a+b)
-(a+b) × ab - x (a+b+x) × (a+b) = 0
-(a+b){ ab + x (a+b+x) } = 0
[ Taking -(a+b) Common]
ab + x (a+b+x )= 0 [ a+b ≠0]
ab + ax + bx +x² = 0
x² + ax +bx +ab = 0
x(x+a) +b (x+a) = 0
(x+a) (x+b) = 0
(x+a)= 0 or (x+b) = 0
x = -a or x= -b
Hence, x = -a or x= -b.
HOPE THIS WILL HELP YOU...
Answered by
1
Similar questions