Math, asked by naman80106, 1 day ago

Solve the following Quadratic Equation and express your answer correct to 2 significant figures. 2x² –x – 37= 0​

Answers

Answered by mathdude500
5

 \green{\large\underline{\sf{Solution-}}}

Given quadratic equation is

\rm :\longmapsto\: {2x}^{2} - x - 37 = 0

On comparing with ax² + bx + c = 0, we get

\red{\rm :\longmapsto\:a = 2}

\red{\rm :\longmapsto\:b =  - 1}

\red{\rm :\longmapsto\:c =  - 37}

So, Solution is given by

\boxed{\tt{ \:  \:  x \:  =  \:  \frac{ - b \:  \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a} \:  \: }}

So, on substituting the values, we get

\rm :\longmapsto\:  x \:  =  \:  \dfrac{ - ( - 1) \:  \pm \:  \sqrt{ {( - 1)}^{2}  - 4(2)( - 37)} }{2(2)} \:  \:

\rm :\longmapsto\:  x \:  =  \:  \dfrac{1 \:  \pm \:  \sqrt{1 + 296} }{4} \:  \:

\rm :\longmapsto\:  x \:  =  \:  \dfrac{1 \:  \pm \:  \sqrt{297} }{4} \:  \:

\rm :\longmapsto\:  x \:  =  \:  \dfrac{1 \:  \pm \:  17.204 }{4} \:  \:

\rm :\longmapsto\:  x \:  =  \:  \dfrac{1 \:   +  \:  17.204 }{4} \:  \: or \:  \: \dfrac{1 \: -   \:  17.204 }{4}

\rm :\longmapsto\:  x \:  =  \:  \dfrac{  \:  18.204 }{4} \:  \: or \:  \: \dfrac{ \: -   \:  16.204 }{4}

\rm \implies\:x = 4.551 \:  \:  \: or \:  \:  \:  - 4.051

Note :-

\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:17.204 \:\:}}}\\ {\underline{\sf{17}}}& {\sf{\:\:297.000000 \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: \: \: \: 289\:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{342}}}& {\sf{\:\: \: \: \: \: 800 \:  \:  \:  \:   \:  \:  \:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:684\:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{34404}}}& {\sf{\:\:160000  \:\:}} \\{\sf{}}& \underline{\sf{\:\:137616\:\:}}  \\ {\underline{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:22384 \:  \:  \:  \:  \:  \: \:\:}}{\sf{}}&{\sf{\:\:\:\:}}\end{array}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions