Math, asked by Aditya0074, 4 months ago

Solve the following quadratic equation and show all the working:


x² − 7x + 3 = 0

Answers

Answered by ankitagaganmali
0

Answer:

Solution

=

7

±

3

7

2

Step-by-step explanation:

Use the quadratic formula

=

±

2

4

2

x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}

x=2a−b±b2−4ac

Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.

2

7

+

3

=

0

x^{2}-7x+3=0

x2−7x+3=0

=

1

a={\color{#c92786}{1}}

a=1

=

7

b={\color{#e8710a}{-7}}

b=−7

=

3

c={\color{#129eaf}{3}}

c=3

=

(

7

)

±

(

7

)

2

4

1

3

2

1

Answered by harshitha202034
0

Answer:

 {x}^{2}  - 7x + 3 = 0 \\  \\ x =  \frac{ - b± \sqrt{ {b}^{2} - 4ac } }{2a}  \\ x =  \frac{ - ( - 7)± \sqrt{ {( - 7)}^{2} - 4(1)(3)} }{2 \times 1}  \\  x=  \frac{7± \sqrt{49 - 12} }{2}  \\ x =  \frac{7± \sqrt{37} }{2}  \\  \boxed{ x =  \underline{ \underline{ \frac{7 +  \sqrt{37} }{2} }} \:  \:  \: or \:  \:  \: x = \underline{ \underline{ \frac{7 -  \sqrt{37} }{2} }}}

Similar questions