Math, asked by shreya7257, 1 year ago

Solve the following quadratic equation by completing square method.
5y2 + y is equal 3​

Answers

Answered by varadad25
2

Given :-

5 {y}^{2}  + y = 3

To find :-

y =?

Solution :-

5 {y}^{2}  + y = 3 \\   \frac{5 {y}^{2} }{5}  +  \frac{y}{5}   =  \frac{3}{5}  \:  \: ... \: dividing \: each \: term \: by \: 5 \\  \\  {y}^{2}  +  \frac{y}{5}  =  \frac{3}{5}  \\  \\ comparing \: with \: a {x}^{2}  + bx + c = 0 \: we \: get \:  \\ a = 1 \:  \: b =   \frac{1}{5}  \:  \: c =  \frac{3}{5}  \\  \\ now \\ third \: term \:  =   {( \frac{1}{2} \times b) }^{2}  \\  =  {( \frac{1}{2}  \times  \frac{1}{5} )}^{2}  \\  =  {( \frac{1}{10} )}^{2}  \\  \\  =  \frac{1}{100} \\  \\ by \: adding \:  \frac{1}{100} to \: given \: equation \: we \: get \:  \\  \\  {y}^{2}  +  \frac{y}{5}  +  \frac{1}{100}  =  \frac{3}{5}  +  \frac{1}{100}  \\   {(y +  \frac{1}{10}) }^{2}  =  \frac{300 + 5}{500}  \\  {(y +  \frac{1}{10}) }^{2}  =  \frac{305}{500}  \\  {(y +  \frac{1}{10} )}^{2}  =  \frac{61}{100}  \\  \\ y +  \frac{1}{10}  =   +    - \sqrt{ \frac{61}{100} }  \\  \\ y +  \frac{1}{10}  =  \sqrt{ \frac{61}{100} }  \\ y +  \frac{1}{10}  =  \frac{ \sqrt{61} }{10}  \\  \\ y =  \frac{ \sqrt{61} }{10}  -  \frac{1}{10}  \\  \\ y =  \frac{ - 1 +  \sqrt{61} }{10}  \\  \\ or \:  \\  \\ y =   \frac{ - 1 -  \sqrt{61} }{10}

Answer :-

y = - 1 + sqt. 61 / 10 OR y = - 1 - sqt. 61 / 10

Hope it helps.

Thanks my answers.

Mark as brainliest.

Similar questions