Math, asked by manebabaso73, 3 months ago

solve the following quadratic equation by factorisation method​

Attachments:

Answers

Answered by subhashattri07
2

here is your answer..

hope helpful

thanks

Attachments:
Answered by Anonymous
2

 \huge\bf { \red S \green O \pink L \blue U \orange T \purple I \red O \pink N \green{...}}

\longmapsto \sf {3x}^{2} - 2 \sqrt{6} + 2 = 0\\

We will factorize

Using splitting the middle term method

\longmapsto \sf {3x}^{2} -  \sqrt{6}x -  \sqrt{6}x + 2 = 0 \\

\longmapsto \sf {3x}^{2} -  \sqrt{2 \times 3}x -  \sqrt{2 \times 3}x + 2 = 0\\

\longmapsto \sf {3x}^{2} - ( \sqrt{2} )( \sqrt{3})x - ( \sqrt{2} )( \sqrt{3})x + 2 = 0\\

\longmapsto \sf \sqrt{3}x( \sqrt{3}x -  \sqrt{2}) -  \sqrt{2}(\sqrt{3}x -  \sqrt{2}) = 0\\

\longmapsto \sf( \sqrt{3} -  \sqrt{2} )( \sqrt{3}x -  \sqrt{2} ) = 0\\

\longmapsto \sf \sqrt{3}x -  \sqrt{2} = 0\\

\longmapsto \sf \sqrt{3}x =  \sqrt{2}\\

\longmapsto \sf x =  \dfrac{ \sqrt{2} }{ \sqrt{3} } \\

\longmapsto\boxed{ \sf x =  \sqrt{ \dfrac{2}{3}}} \\

Similar questions